
Distinguishing Regulatory DNA From Neutral Sites

Laura Elnitski,1,3 Ross C. Hardison,1 Jia Li,2 Shan Yang,1 Diana Kolbe,1,3

Pallavi Eswara,3 Michael J. O’Connor,3 Scott Schwartz,3 Webb Miller,3,4 and

Francesca Chiaromonte2,5,6

1Departments of Biochemistry and Molecular Biology, 2Statistics, 3Computer Science and Engineering, 4Biology, and 5Health

Evaluation Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA

We explore several computational approaches to analyzing interspecies genomic sequence alignments, aiming to

distinguish regulatory regions from neutrally evolving DNA. Human–mouse genomic alignments were collected

for three sets of human regions: (1) experimentally defined gene regulatory regions, (2) well-characterized exons

(coding sequences, as a positive control), and (3) interspersed repeats thought to have inserted before the

human–mouse split (a good model for neutrally evolving DNA). Models that potentially could distinguish

functional noncoding sequences from neutral DNA were evaluated on these three data sets, as well as bulk

genome alignments. Our analyses show that discrimination based on frequencies of individual nucleotide pairs

or gaps (i.e., of possible alignment columns) is only partially successful. In contrast, scoring procedures that

include the alignment context, based on frequencies of short runs of alignment columns, dramatically improve

separation between regulatory and neutral features. Such scoring functions should aid in the identification of

putative regulatory regions throughout the human genome.

Because relatively few mammalian genes are well-characterized,

annotation of genes in these large, complex genomes has

largely relied on powerful ab initio programs such as GENSCAN

(Burge and Karlin 1997) and on evidence-based methods

such as EST database searches using local alignment tools like

BLAST (Altschul 1997). Indeed, application of these two ap-

proaches, often using several distinct implementations of the

ideas, has allowed dramatic, albeit imperfect, progress in iden-

tifying putative genes. Although the success of ab initio pro-

grams is dependent on a reasonably complete model of the

structure of mammalian genes, their predictions can be over-

lapped with those of evidence-based methods to increase ac-

curacy (e.g., GrailEXP; http://compbio.ornl.gov/grailexp/; Xu

and Uberbacher 1997).

In principle, both ab initio and evidence-based ap-

proaches can be explored for identifying putative regulatory

elements. An example of the latter is the search for clusters of

particular transcription-factor binding sites (Berman et al.

2002; Jegga et al. 2002). As for the former, because a reliable

model for regulatory elements has not yet been constructed,

one must seek alternative strategies. In many studies of dis-

crete loci, highly conserved noncoding sequences have

proven to be good indicators of regulatory elements (e.g.,

Hardison et al. 1997b; Loots et al. 2000). However, not all regu-

latory elements are uniquely identified by human–mouse

alignments (Flint et al. 2001), and the regional variation in

evolutionary rates in mammals precludes finding a single cri-

terion that distinguishes regulatory regions from neutral DNA

genome-wide (Hardison 2000; Pennacchio et al. 2001; Hardi-

son et al. 2003). Thus, scoring procedures that evaluate align-

ments for properties other than overall percent identity need

to be developed to test the effectiveness of interspecies align-

ments as ab initio predictors of regulatory regions.

A critical requirement for developing such procedures is

a collection of well-characterized, experimentally determined

regulatory regions. Alignments that overlap such a collection

can then be evaluated quantitatively by a variety of scoring

procedures, and their score values compared with those of

coding sequences and neutrally evolving DNA. Here we report

on the compilation of a regulatory region data set, and test

the efficacy of simple and more sophisticated alignment-

scoring schemes for distinguishing regulatory from neutral

DNA. These studies were made possible by the availability of

high-quality draft genome sequences of human (Lander et al.

2001) and mouse (Waterston et al. 2002), and of a collection

of highly sensitive, specific alignments of the two genomes

(Schwartz et al. 2003; Waterston et al. 2002).

We show that the power of high-scoring alignments as

predictors of regulatory regions, previously demonstrated

only for relatively small genomic loci, can be evaluated sys-

tematically by comparison with a good model for neutral

DNA, that is, ancestral repeats that are relics of transposons

active before the human–mouse split but defunct since the

radiation (Lander et al. 2001; Waterston et al. 2002). The most

successful analyses include the context of the alignment in

the scoring procedure. This approach will be extended to

whole-genome alignments between human and mouse, and

the results will be made available as an online resource at

http://bio.cse.psu.edu/.

RESULTS

Types of Data
In our analyses, we considered four classes of DNA segments

aligned between human and mouse. The first is a collection of

known regulatory regions, experimentally defined and

trimmed to the smallest functional unit from which no fur-

ther deletions can be made without reducing activity. The 95

sequences in this collection vary in length from 62–2973 bp.

Only regulatory regions that aligned between human and
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mouse were included (2 of the 95

regions were excluded because se-

quences were missing from the

mouse assembly). However, no

threshold for the amount of align-

ing DNA within a regulatory region

was applied.

The second class is a large col-

lection (1,400,000) of orthologous

ancestral repeats that align between

human and mouse. These ancestral

repeats transposed prior to the ro-

dent–primate split and are no

longer active. Because no selective

pressure (either positive or nega-

tive) is applied to these sites as they

are accumulating mutations, they

serve as a template for neutral evo-

lution (Waterston et al. 2002).

The third class is a collection

of coding regions derived from an-

notated human exons in RefSeq

(Pruitt et al. 2000), as obtained

from the Human Genome Browser

(HGB; Kent et al. 2002). This serves

as a positive control in our experi-

ments, as it is a set of known func-

tional elements whose alignments

are clearly distinguishable from

neutral DNA (Batzoglou et al.

2000). It should be noted that

alignments located within the ex-

ons contribute to <2% of all align-

ments (Waterston et al. 2002).

The fourth class is a collection

of human–mouse alignments com-

prising all genomic DNA (omitting

exons),whichwe refer to as bulkDNA.

Discrimination Based on

Individual Pairing Frequencies
Human –mou s e a l i g nmen t s

(Schwartz et al. 2003; Waterston et

al. 2002) in each of the four classes

were partitioned into nonoverlap-

ping windows of size 200 bp.

Within each window, we computed

the alignment score per column

(ASPC), based on the BLASTZ scor-

ing scheme (Schwartz et al. 2003),

and the density of gaps.

The aligning program BLASTZ

uses a scoring matrix (Chiaromonte

et al. 2002) for the 16 possible pair-

ings of A, C, G, and T, along with

affine gap penalties (i.e., open gap

and gap-extension penalties). The ASPC in a window is simply

the sum of the frequencies of the 16-symbol alphabet com-

prising A, C, G, T pairings multiplied by the coefficients in the

BLASTZ matrix, along with a special treatment for gaps (see

Methods). A graph of the cumulative distribution of the ASPC

for the four types of DNA shows that this score cleanly sepa-

rates coding exons from ancestral repeats and bulk DNA, but

fails to separate regulatory regions (Fig. 1A). In particular, the

overlap between the ASPC distribution for the regulatory and

ancestral repeat classes is substantial.

Generalizing the spirit of the ASPC, we consider linear

combinations of frequencies of a 17-symbol alphabet com-

prising all A, C, G, T pairings plus an additional symbol for

gaps. Gap density itself is one such combination, with the gap

Figure 1 (A) Cumulative distributions of ASPC (alignment score per column) in 200-bp nonover-
lapping windows from regulatory elements, ancient repeats, coding exons (cds), and bulk DNA align-
ments. The ASPC is calculated using the BLASTZ scoring scheme with a penalty for gaps. The vertical
line represents the ASPC value at which regulatory element and ancient repeat distributions intersect
(i.e., maximal distance between cumulative distributions). With this as a threshold, one obtains a
certain percentage of false positives (ancient repeats above the threshold) and false negatives (regu-
latory elements above the threshold). (B) Cumulative distributions of gap density in 200-bp nonover-
lapping windows from regulatory elements, ancient repeats, coding exons (cds), and bulk DNA align-
ments. The vertical line and percentages of false positives and false negatives are obtained as for ASPC
in A, except that here false positives are ancient repeats below the threshold, and false negatives are
regulatory elements above it.
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frequency having a coefficient of 1, and each other symbol

frequency a coefficient of 0. As seen in Figure 1B, gap density

clearly separates coding exons, but leaves a substantial over-

lap between regulatory and ancestral repeats classes.

The effectiveness of these combinations was investigated

systematically by constructing a data cloud of 693 points

(from the four basic alignment collections) in 17 dimensions.

The points correspond to the 93 alignments in the regulatory

elements collection, plus 200 alignment segments of size 200

bp randomly selected from each of the ancestral repeats, ex-

ons, and bulk DNA collections. The dimensions correspond to

17-symbol frequencies computed on such alignments (see

Methods section for details).

We applied Principal Component Analysis (PCA) to as-

certain the variability structure of alignments in these dimen-

sions. The first principal component is the direction of maxi-

mal variability of the data, to which each original coordinate

(17-symbol frequencies) participates via linear combination

coefficients, and it explains a certain share of the overall vari-

ance. The second principal component is the direction, or-

thogonal to the first, which has maximal variability after that,

and explains a certain share of the overall variance, and so on

(the coefficients for the first and second principal compo-

nents are reported in Table 1 and Fig. 2C). The first principal

plane is the span of the first two principal components, and it

captures a share of the overall variance equal to the sum of the

two component shares. If this sum is high, the orthogonal

projection of the data cloud onto the first principal plane

provides a good low-dimensional approximation of the data

structure.

In our case, the first principal component plane explains

82% of the overall cloud variability. Projecting the data onto

this plane gives a boomerang-like shape (Fig. 2A). The first

principal component captures a tradeoff between gaps and

matches, with C and G matches weighing more than A and T

matches. The second principal component captures a tradeoff

between C and G matches on one side, and A and T matches

on the other, with gaps playing a nonnegligible but much

smaller role (see Table 1 and Fig. 2C). From the vantage point

of the principal plane, simple linear combinations of indi-

vidual paring frequencies seem to not provide good discrimi-

nation of genomic features: One arm of the boomerang cloud

is dominated by neutral and bulk DNA, whereas the other arm

is dominated by exons and regulatory regions, but nonfunc-

tional and functional features have a sizeable overlap at the

convergence of the two arms. Next, we applied Sliced Inverse

Regression (SIR) to identify linear combinations of high dis-

criminatory power. This analysis uses the same data cloud

used in PCA plus the known classification of each point (regu-

latory region, coding region, ancestral repeat, or bulk DNA),

which plays the role of a categorical response variable. When

used for categorical responses, SIR (Li 1991; Cook 1998 and

references therein) is a close relative of traditional discrimi-

nant analysis. The first SIR direction aims at maximal rel-

evance to the classification, with each original coordinate par-

ticipating via linear combination coefficients. Subsequent or-

thogonal SIR directions are progressively less relevant for the

classification (coefficients for the first SIR direction are re-

ported in Table 1 and Fig. 2C). The first combination identi-

fied by SIR (see Fig. 2B) exhibits a relatively small variation

range on the data (standard deviation 0.038, whereas that for

PCA1 is 0.157 and for PCA2 0.088). In fact, it is well outside

the first principal plane (maximal data variability). A projec-

tion of SIR1 on the first principal plane is shown in Figure 2A.

However, as can be seen in Figure 2B, SIR1 succeeds in sepa-

rating both regulatory elements and exons from ancestral re-

peats and bulk DNA. The overlap between the distributions

for the regulatory and ancestral repeat classes is still nonneg-

ligible, but much reduced with respect to the overlaps pre-

sented by ASPC and gap density. The coefficients for the 17-

symbol frequencies (Table 1, Fig. 2C) suggest a tradeoff, hav-

ing matches (in particular, C and G matches) and some

mismatches (in particular, CA, CG, and GC) on one side, and

other mismatches (in particular, AG,GT, and TG) on the other

side (subsequent SIR directions are not discussed here).

Interestingly, the broad features revealed by PCA and SIR

are robust when the 17-symbol al-

phabet is collapsed into a smaller

set. For instance, the boomerang

shape in the first principal plane

and the degree of class separation

along SIR1 remain similar when

these linear analyses are applied to

the 4-dimensional data cloud ob-

tained by collapsing the alphabet

into M (matches), T (C to/from T

and G to/from A), V (A to/from C, A

to/from T, G to/from C, and G to/

from T), and gaps (results not

shown). Thus it is reasonable to ex-

amine smaller alphabets, but now

considering scores taking into ac-

count the context of the align-

ments.

Discrimination Based

on Frequencies of Short

Pairing Patterns
The first such score was motivated

by the observation that many tran-

scription factors bind to a cognate

Table 1. Coefficients of the Linear Combinations Expressing First and Second Principal
Components, and First SIR Direction

Pairing_freq PCA1 PCA2 SIR1

faa_200 �0.154958 �0.475658 0.111993
fac_200 0.000931 �0.033166 �0.113294
fag_200 �0.006815 �0.080282 �0.441445
fat_200 0.002420 �0.053753 �0.088708
fca_200 �0.000446 �0.004373 0.239844
fcc_200 �0.265820 0.577022 0.238753
fcg_200 �0.004137 0.018679 0.269244
fct_200 �0.012399 �0.009786 �0.096109
fga_200 �0.014155 �0.014012 �0.034745
fgc_200 �0.006835 0.021381 0.332223
fgg_200 �0.268567 0.476319 0.301653
fgt_200 �0.003292 �0.005356 �0.480595
fta_200 0.008541 �0.051466 �0.043727
ftc_200 �0.002311 �0.071793 �0.012283
ftg_200 �0.000159 �0.035737 �0.348887
ftt_200 �0.168724 �0.411842 0.133115
fgap_200 0.896756 0.153753 0.032474

Columns in the table are eigenvectors from spectral decompositions of appropriate variance/
covariance matrices. Thus, each has norm 1 (the squares of the coefficients add up to 1), and PCA1
and PCA2, which come from the same decomposition, are orthogonal (the cross products add up
to 0).
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DNA sequence of ∼6 bp. Clusters of transcription-factor bind-

ing sites tend to comprise known enhancers (e.g., Berman et

al. 2002; Jegga et al. 2002), with up to 68% of the sites being

conserved between humans and rodents (Dermitzakis and

Clark 2002). We identified occurrences of exact hexamer

matches by sliding a 6-bp window along alignments, 1 bp at

a time. Then, partitioning whole-genome alignments into

200-bp nonoverlapping windows, we measured the density of

exact hexamer matches in the four classes of DNA examined.

As seen in Figure 3A, this score does better than ASPC and gap

density, but worse than SIR1, in regard to the overlap between

the distributions for the regulatory and ancestral repeat

classes. Like SIR1, the density of exact hexamer matches does

not distinguish regulatory from coding regions, but this is to

be expected because the latter generally align without gaps

(Makalowski et al. 1996).

Next, we compute more complex context-embedding

scores as (properly normalized) log-odds ratios from Markov

models. These models are formulated for increasingly finer

underlying alphabets of matches, mismatches, gaps, and

higher orders. The order expresses how many preceding con-

tiguous positions are considered in modeling the probability

of each symbol at a given location. For this analysis, we re-

strict attention to the regulatory versus neutral discrimina-

tion, and use the 93 regulatory segments plus 200 ancestral

repeat segments of size 200 bp already used for the PCA and

SIR analyses.

Table 2 reports percentages of overlap for various alpha-

bets and orders. In accordance with our observations of the

collapsibility of the 17-symbol alphabet, and the importance

of length-6 patterns for regulatory sequence, we reach an ex-

cellent discriminatory performance when using a 5-symbol

alphabet comprising MAT (matches of As and Ts), MGC

(matches of Gs and Cs), V, T and gaps, and fifth order. This

score outperforms our best score based on frequencies of in-

dividual pairings (SIR1), and it completely eliminates the

overlap between the distributions for the regulatory and an-

cestral repeat classes (dark blue and magenta cumulative dis-

tribution functions in Fig. 3B).

In Figures 1 through 3A and Table 2 we provide false-

negative (regulatory elements that can be mistaken for ances-

tral repeats) and false-positive (ancestral repeats that can be

mistaken for regulatory elements) percentages associated with

the various scores we considered. These percentages concern

the regulatory and ancestral repeats segments used in train-

ing, and exploit the natural thresholds defined by the score

value at which regulatory element and ancestral repeat distri-

butions intersect. The 5-symbol fifth-order Markovmodel log-

odds score, as well as log-odds scores derived from larger al-

phabets, present 0% false negatives and 0% false positives

because the two distributions do not overlap. However, be-

cause of the fairly limited collection of regulatory elements

Figure 2 First principal plane projection for frequencies on a 17-
symbol alphabet comprising all A, C, G, T pairings plus an additional
symbol for gaps. The data cloud contains 93 regulatory elements
(Reg), plus 200 alignment segments of size 200 bp randomly selected
from each of ancient repeats (AR), coding exons (CR), and bulk DNA
(shown as different marks). Percentages of explained variability are
reported for the first and second principal component (total for the
plane, 82%). The black line is a projection of SIR1 (see B) on the first
principal plane. (B) Cumulative distributions of SIR1 (first Sliced In-
verse Regression linear combination) for frequencies on the 17-
symbol alphabet. The distributions concern 93 regulatory elements
(Reg), plus 200 alignment segments of size 200 bp randomly selected
from each of ancient repeats (AR), coding exons (CR), and bulk DNA.
The vertical line and percentages of false positives (ancient repeats
above the threshold) and false negatives (regulatory elements below
the threshold) are obtained as for ASPC in Figure 1A. (C) Coefficients
of the linear combinations expressing first (black) and second (red)
principal components, and first SIR direction (green). These are eig-
envectors from spectral decompositions of appropriate variance/
covariance matrices (see Methods and Table 1). Thus, each has norm
1 vector (the squares of the coefficients add up to 1), and PCA1 and
PCA2, which come from the same decomposition, are orthogonal
(the cross products add up to 0).
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presently available for training, we

went a step further and assessed

performance robustness for our

5-symbol fifth-order log-odds score

using two different cross-validation

schemes. The results reported in

Table 3 are very encouraging given

the small size of our training data:

Erroneous classification percent-

ages (false positive and false nega-

tives) are ∼6%, and ambiguous clas-

sification percentages (score range

between the two nonoverlapping

distributions) remain about or well

below 20%.

Although our 5-symbol fifth-

order log-odds score expression is

derived based only on regulatory

and ancestral repeat data, it can be

used to score any alignment seg-

ment. As additional controls, we

scored the sets of 200 randomly se-

lected segments of length 200 bp

from coding regions and bulk DNA

previously used in PCA and SIR, as

well as sets of 200 randomly se-

lected segments of length 200 bp

from 3�- and 5�-UTRs. The corre-

sponding cumulative distribution

functions are shown in green,

bright blue, orange, and purple in

Figure 3B. Interestingly, the regula-

tory distribution is similar in shape,

but shifted to the right (higher val-

ues) of that for coding regions.

Thus, unlike other scores consid-

ered in our study, the 5-symbol

fifth-order log-odds score may be

successfully capturing something

other than simple conservation,

such as pairing patterns more com-

mon in regulatory than in coding

DNA.

The distribution of log-odds

scores for alignments in bulk DNA

(noncoding, aligned DNA) is simi-

lar in shape to that of ancestral re-

peats, and although shifted to the

right, still has minimal overlap with

the regulatory elements distribu-

tion (Fig. 3B, shown in bright blue).

Thus, our score distinguishes regu-

latory regions not only from ances-

tral repeats but also from bulk DNA.

The 3�- and 5�-UTR distribu-

tions are similar to one another and

cover a range in values similar to

that for the regulatory distribution.

The distributions of UTR scores are

more concentrated (steeper cumu-

lative distribution functions) and slightly shifted to the right

of the regulatory region distribution. Thus, our score also de-

tects UTRs. Indeed, regulatory elements can reside in or over-

lap with untranslated regions. The fact that the UTR distribu-

tions overlap that of regulatory elements and both score

higher than do the coding regions shows that sequence con-

servation is not the only nor the prevailing determinant for

our score.

Figure 3 (A) Cumulative distributions of exact hexamer matches density in 200-bp nonoverlapping
windows from regulatory elements, ancient repeats, exons, and bulk DNA alignments. The density is
calculated by scrolling over 6-nt sequences with no gaps in each window. Vertical line and percentages
of false positives (ancient repeats above the threshold) and false negatives (regulatory elements below
the threshold) are obtained as for ASPC in Figure 1A. (B) Cumulative distributions of (normalized)
log-odds score from fifth-order 5-symbol alphabet Markov Models. The score expression is derived
based on 93 regulatory elements and 200 alignment segments of size 200 bp randomly selected from
ancient repeats. The cumulative distributions for these are shown in dark blue and magenta, respec-
tively. Because the distributions do not intersect, any threshold between the maximum score value for
ancient repeats and the minimum score value for regulatory elements guarantees 0% false positives
and 0% false negatives. The green, orange, purple, and bright blue cumulative distributions are
obtained applying the score expression to segments from coding regions, UTRs, and bulk DNA.
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The 5-symbol fifth-order log-odds score can be computed

on any segment of human genomic DNA aligned with mouse

to produce an index of regulatory potential in comparison to

neutral behavior. We are presently implementing software

that will provide a regulatory potential index at each site in

the human genome (aligned with mouse) as the log-odds

score for the 200-bp window centered at the site (available at

http://bio.cse.psu.edu/).

DISCUSSION
A lower bound on the fraction of the human genome likely

under selection is ∼5%–6% (Waterston et al. 2002; F. Chiaro-

monte, R. Weber, K.M. Roskin, M. Diekhans, J. Kent, and D.

Haussler, in prep.). Only ∼1.5% of the genome codes for pro-

tein, leaving at least 3.5% under selection for some other

function. One of the critical types of noncoding but func-

tional sequence that one wishes to find are gene regulatory

elements, such as promoters, enhancers, silencers, and

boundary elements. Some of these are clearly conserved

among mammalian species (Hardison 2000; Pennacchio et al.

2001), but methods for cleanly distinguishing them from

other genomic sequence alignments have not been systemati-

cally examined.

Some previous criteria applied for identifying potential

regulatory elements have been noncoding alignments in oth-

erwise divergent regions (Hardison et al. 1997a; Hardison et

al. 2000) or a combination of some minimal length and per-

cent identity, such as at least 100 bp of gap-free alignment

and >75% identity (Loots et al. 2000). These approaches have

been successful for certain genomic regions (Jackson et al.

1996; Elnitski et al. 1997; Loots et al. 2000), but not all known

regulatory elements fit those criteria (e.g., Flint et al. 2001).

One of the major obstacles to applying a single criterion for

potential regulatory regions genome-wide is the substantial

variation in the underlying mutation rates from region to

region (Hardison et al. 2002; Waterston et al. 2002). Conser-

vation scores that incorporate the local neutral substitution

rate can be used to compute a likelihood of a particular se-

quence being under selection, and these are now available

genome-wide (Waterston et al. 2002). Thus one can deter-

mine if a particular sequence is likely to be functional, but

these conservation scores do not address the type of function

for each sequence.

We have performed several discrimination analyses,

comparing the behavior of two types of functional sequences

(regulatory and coding regions) with neutral DNA (ancestral

repeats) and bulk DNA in alignments between human and

Table 2. False-Negative and False-Positive Percentages for (Normalized) Log-Odds Scores From Markov Models, for Various
Orders and Alphabets

Alphabet

Order

1 2 3 5

FN FP FN FP FN FP FN FP

2 20.4 13 19.4 9.5 24.7 5.0 14.0 12.5
3 23.7 9.5 11.8 18.5 16.1 10.5 9.7 6.0
4 21.5 11.0 19.4 9.0 12.9 10.0 1.1 3.0
5a 9.7 12.5 9.7 7.0 10.8 4.0 0 0
5b 23.7 6.5 21.5 5.0 8.6 7.0 0 0
7a 11.8 12.5 8.6 8.0 4.3 3.5 0 0
7b 16.1 7.0 8.6 6.0 3.2 0.5 0 0

Percentages are obtained as for ASPC in Figure 1A. Alphabets considered here are: (2) match, other; (3) match, mismatch, gap; (4) match,
transition, transversion, gap, (5a) match (A or T), match (C or G), transition, transversion, gap; (5b) match (A or G), match (C or T), transition,
transversion, gap; (7a) match (A or T), match (C or G), transition, transversion (A–T), transversion (C–G), transversion (other), gap; (7b) match
(A), match (C), match (G), match (T), transition, transversion, gap.
Fifth order models on alphabets of 5 or more symbols give scores for which regulatory elements and ancestral repeats distributions do not
intersect (any threshold between the maximum score value for ancestral repeats and the minimum score value for regulatory elements
guarantees 0% false positive and 0% false negatives).

Table 3. Results of Two Cross-Validation Schemes for the Log-Odds Score Obtained From 5-Symbol (Match of A or T, Match of G

or C, Transition, Transversion, Gap) Fifth Order Markov Models

Cross-validation scheme
Reg.

correct
Reg.

ambiguous
Reg.

erroneous
Anc. rep.
correct

Anc. rep.
ambiguous

Anc. rep.
erroneous

5–5 (100) 81.4 12.2 6.4 73 21 6
Leave-one-out 78.49 15.05 6.452 72.5 21 6.5

Because the regulatory and ancestral repeats distributions do not overlap, instead of reporting correct and erroneous classification rates relative
to an arbitrary threshold, we list three percentages; namely, correct classifications, ambiguous cases (falling between the two nonoverlapping
distributions), and erroneous classifications. In the first cross-validation scheme, we withhold from training and then classify five regulatory
elements and five ancestral repeat segments selected at random. This procedure is repeated 100 independent times, and correct, ambiguous,
and erroneous classification percentages are obtained averaging over these replications. The second scheme is a leave-one-out cross-validation,
in which each data point in turn is withheld from training and then classified.
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mouse. Scores based on individual pairing frequencies, such

as ASPC, gap density, and leading PCA and SIR linear combi-

nations, do separate different classes of aligned segments.

However, even when selected for maximal discrimination

(SIR analysis), these scores leave a substantial overlap between

regulatory and neutral DNA, and remain higher for coding

than for regulatory DNA.

More complex procedures, which exploit short pairing

patterns characteristics of regulatory DNA through the use of

Markov models, allow a much higher score separation be-

tween regulatory elements and ancestral repeats, and eventu-

ally score regulatory elements higher than coding regions.

Generally, score separation between regulatory elements and

ancestral repeats improves as the order of the Markov models

and the size of the underlying alphabet increase. We obtain

excellent results when using fifth-order (which captures

length-6 patterns), and a 5-symbol alphabet that distin-

guishes between A/T and G/C matches.

Functional regions, and among them known regulatory

regions, tend to be higher in GC content than other DNA

(Waterston et al. 2002). Also our SIR analysis provides some

evidence that alignment pairs preserving GC content are fa-

vored in functional regions. SIR1, in which both regulatory

and coding regions score higher than neutral and bulk DNA,

has positive coefficients for CC and GG matches as well as CG

and GC mismatches. However, GC content alone does not

fully explain the effects seen in SIR1. For instance CA mis-

matches also have positive coefficients, and some substitu-

tions that would increase GC content (e.g., AG and TG) have

negative coefficients.

The role of gaps in these discriminatory analyses is

subtle, but apparent. In the distribution of gap density, cod-

ing regions stand out clearly as gap-free elements, where-

as regulatory regions behave in a way very similar to ances-

tral repeats and bulk DNA. Also, the frequency of gaps plays

a role in first and second principal components, and the

presence of gaps is indirectly measured by the density of

matching hexamers (sequences with gaps are automatically

discarded from the density computation). From a functional

viewpoint, there is no reason to expect regulatory regions to

be gap-poor. In fact, gaps may be of some benefit in relaxing

a stringent requirement for exact spacing of upstream ele-

ments.

The discriminatory power of the log-odds score based on

5-symbol fifth-order Markov models is impressive in the pres-

ent analysis, suggesting that it will be helpful in finding can-

didate regulatory regions genome-wide. However, our train-

ing data comprised only 93 regulatory regions. This is a small

fraction of the total regulatory elements for as many as 30,000

genes. Also, many of the 93 regulatory elements we used are

tissue-specific. Thus, the training set is not necessarily a rep-

resentative sampling of all regulatory elements, and it may be

biased toward the types of elements most frequently studied

to date, such as those for tissue-specific or inducible genes. It

follows that some types of regulatory elements are likely un-

derrepresented in the regulatory potentials we are in the pro-

cess of computing for genome-wide alignments. Future appli-

cations of these methods should incorporate larger training

sets as more regulatory elements are described in detail. Also,

it is possible that more refined methods could distinguish

different types of regulatory elements, for example, constitu-

tive versus tissue-specific. As more members of other classes of

regulators are characterized, such as silencers, insulators, and

boundary elements, development of discrimination scores for

these classes may be feasible. These should be fertile grounds

for future studies.

In addition to gene regulatory elements, the set of DNA

under selection that does not code for protein should contain

RNA-coding genes and possibly determinants of chromosome

structure and function. Such nonregulatory, noncoding DNA

may have alignment characteristics distinctive from those of

the regulatory regions. Hence some noncoding sequences

with high locally adjusted conservation scores, reflecting a

strong likelihood of selection (Roskin et al. 2002; Waterston et

al. 2002), may have low regulatory potential, using the scores

described here. These are candidates for functional sequences

not involved in regulation (or more precisely, not promoters

and enhancers with properties similar to the ones in our train-

ing set). Further analysis of such sequences could be informa-

tive.

As genomic alignments from multiple species become

available, the ability to distinguish functional regions should

improve (Flint et al. 2001; Botcherby 2002). Applying high-

order Markov models to multiple alignments will be challeng-

ing, because of the exponential explosion in the state space

size to be counteracted through meaningful collapses in the

alphabet of all multiple nucleotide combinations. Again, so-

lutions to such issues should be sought in future studies.

The ab initio approaches described here are designed to

improve the reliability of predictions of regulatory elements

based on alignments of genomic DNA. Such predictions have

been helpful but not infallible in previous studies. The critical

test of these tools and resources will be their application in

experimental analyses. We look forward to seeing how novel

potential regulatory elements identified by these and other

tools behave when tested for activity in appropriate biological

systems.

METHODS
All analyses use the build 30 assembly of the human genome
aligned to the February 2002 freeze from the Mouse Genome
Sequencing Consortium; available at the Human Genome
Browser Web site (http://genome-test.cse.ucsc.edu/). We used
the axtBEST alignments, which are based on the BLASTZ
alignments and give the best mouse hit to each human posi-
tion. The regulatory region collection is available online at
http://bio.cse.psu.edu/mousegroup/Reg_annotations/.
It was compiled from collections described in Wasserman and
Fickett (1998), Krivan and Wasserman (2001), Dermitzakis
and Clark (2002), and references therein. Each entry was
trimmed to the smallest functional unit described in the lit-
erature, below which further deletions caused a loss of activ-
ity. Ancestral repeats are those present in the last common
ancestor to mouse and human, as determined by the amount
of divergence from the consensus sequence (Hardison et al.
2003; Waterston et al. 2002). Alignments in bulk DNA were
masked at the position of exons as listed in the HGB RefSeq
track (http://genome-test.cse.ucsc.edu/; http://www.ncbi.nlm.
nih.gov/LocusLink/).

Alignment Score per Column

The ASPC is computed using coefficients in the BLASTZ scor-
ing matrix (Schwartz et al. 2003):

A C G T

A 91 −114 −31 −123

C −114 100 −125 −31

G −31 −125 100 −114

T −123 −31 −114 91
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As for gap positions, O = �400 is the coefficient for open gap
penalty, and E = �30 that for extension gap penalty. Also,
N or n in the human sequence gets an N = �100 coefficient,
and X or x in the human sequence gets an X = �1000 coef-
ficient.

To compute the ASPC for nonoverlapping 200-bp win-
dows, we used the following protocol: Alignments of <200 bp
are ignored. When parsing an alignment in 200-bp windows,
if the last segment is less than half of the required size (200/
2 = 100), it is merged into the previous window to form a
window larger than 200 but smaller than 300 bp. For each
window, the ASPC is the sum of individual position scores
divided by the window size (alignment gaps in the human
sequence induce windows that actually contain <200 posi-
tions, but the denominator is always taken to be 200). For
alignments in bulk DNA, coding regions were masked prior to
calculating a score.

Principal Component Analysis and Sliced

Inverse Regression

We used our four basic alignment collections to construct a
data cloud of 693 points in 17 dimensions as follows: 93 of the
95 alignments in the regulatory elements collection were re-
tained as such, and 17-symbol frequencies (A, C, G, T pairings
and gaps) were computed on each. Then, 200 alignments of
length greater than or equal to 200 bp were selected at ran-
dom from each of the ancestral repeats, coding regions, and
bulk DNA collections. The 17-symbol frequencies were com-
puted on the first 200 bp only of each of these alignments.
The 200-bp size was selected for compatibility with the size of
nonoverlapping windows used for ASPC and gap density (in
relation to the length of regulatory elements in our collection,
about a third of them have lengths smaller than or equal to
200 bp).

PCA (see, e.g., Gnanadesikan 1997) is based on the spec-
tral decomposition of the overall variance/covariance matrix.
The eigenvectors represent orthogonal directions (i.e., linear
combinations of the 17 frequencies) ranked in decreasing or-
der of data variability. The corresponding eigenvalues (in
nondecreasing order) quantify this variability.

For SIR (Li 1991; Cook 1998 and references therein), we
use the same data cloud used in PCA, plus the information
relative to the points known classification (a categorical re-
sponse variable). When used for categorical responses, SIR is a
close relative of Fisher linear discriminant analysis (FLDA).
Estimation is based on the spectral decomposition of the be-
tween classes variance/covariance matrix, standardized by the
overall variance/covariance matrix (as opposed to the within
variance/covariance matrix, used for standardization in
FLDA). The eigenvectors represent orthogonal directions (i.e.,
linear combinations of the 17 frequencies) ranked in decreas-
ing order of relevance to the classification. The corresponding
eigenvalues (in nondecreasing order) quantify this relevance.

Density of Exact Hexamer Matches

Exact hexamer matches are counted by sliding a 6-bp window
across aligned sequence 1 bp at a time (whenever the sliding
window contains six matches, the count is increased by 1).
For each nonoverlapping 200-bp window, the density is com-
puted by dividing the count relative to the window by the
overall number of sliding 6-bp windows contained in the win-
dow (namely, 200 � 6 + 1). Alignments shorter than 200 bp
are discarded, and segments shorter than 200 bp at the end of
alignments are merged with the previous window or dis-
carded, as illustrated above for the ASPC calculation. Bulk
DNA was masked for coding exons prior to analysis.

Log-Odds Ratios From Markov Models

This analysis uses the 93 regulatory segments plus 200 ances-
tral repeat segments of size 200 bp already used for the PCA
and SIR analyses. A separate K-th order Markov model on an
alphabet of J symbols is estimated using each of the two sets.
Estimation is based on empirical frequencies as follows: For a
given data set, the occurrences of all J(K+1) possible (K + 1)-
symbol combinations are counted (a 1 is added to each count
to prevent problems with outcomes that apparently had 0
probability because of our relatively small data sets). Then the
counts associated with hexamer strings that share the same
first 5 symbols are pooled and normalized to create transition
probabilities of the Markov chain; for instance, transition
probability(MMMMMG) = occurrences(MMMMMG)/
occurrences(MMMMM), where occurrences(MMMMM) is the
sum of the counts for MMMMM*, as * ranges on all alphabet
symbols. These transition probabilities can be arranged in a
matrix of size JK � J so that each row corresponds to a com-
bination of the first K symbols and each column corresponds
to an additional symbol following them.

Based on the two transition probability matrices result-
ing from this process, a score matrix is formed by taking log-
odds ratios; that is, the natural logarithm of the ratio of the
probability for a regulatory region to the probability for a
neutral region (ln(prob_reg/prob_neutral)). To sum up, each
possible string of contiguous (K + 1) symbols is assigned with
a log-odds score. To measure how much more likely an align-
ment to be analyzed is regulatory as compared with neutral,
we compute the ratio between the probabilities of this align-
ment being generated by the Markov model of the regulatory
region and by the model of the neutral region. The log of this
ratio (raw score) is simply the summation over the entire
length of the alignment of the log-odds ratios for each con-
tiguous (K + 1) symbols string in it (given position, and pre-
vious K ones).

Because the raw score is strongly dependent on the
length of an alignment (this changes over a wide range for our
regulatory set), normalization is needed to allow the use of a
single threshold in deciding whether an alignment is regula-
tory or neutral. The final calculated score is given by (raw
score � expectation * length)/(length1.25). The expectation is
the average score of a contiguous (K + 1) symbol string using
the equilibrium distribution of the ancestral repeats Markov
chain.
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