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Abstract

We develop techniques to estimate the statistical significance of gap-free alignments between two
genomic DNA sequences, using human-mouse alignments as an example. The sequences are assumed
to be sufficiently similar that some but not all of the neutrally evolving regions (i.e., those under
no evolutionary constraint) can be reliably aligned. Our goal is to model the situation in which the
neutral rate of evolution, and hence the extent of the aligning intervals, varies across the genome.
In some cases, this permits the weaker of two matches to be judged as less likely to have arisen
by chance, provided it lies in a genomic interval with a high level of background divergence. We
employ a Hidden Markov Model to capture variations in divergence rates, and assign probability
values to gap-free alignments using techniques of Dembo and Karlin, which are related to those
used for the same purpose by Blast. Our methods are illustrated in detail using a 1.49 Mb genomic
region. Results obtained from the analysis of human chromosome 22 using these techniques are also
provided.

I Introduction

Aligning human and mouse genomic sequences has been proposed as a high-throughput strategy
for analyzing and annotating the human genome. In particular, a genomic interval that is highly
conserved between the two species can be considered as a candidate for encoding a protein [16] or
regulating gene transcription [14]. The proposal has been adopted whole-heartedly by the genomics
community, resulting in accelerated programs to sequence the mouse genome by Celera Genomics
and, independently, by the public sequencing consortium. Mouse whole-genome shotgun sequence
data in the public domain are just beginning to be used for improving the analysis and annotation
of the public sequence data from the human genome.

There exists no uniquely plausible criterion for determining whether a genomic interval is “highly
conserved”. Of course, part of the difficulty lies in the fact that any threshold will be at least
somewhat arbitrary. A more vexing problem stems from regional differences in the background
level of human-mouse similarity. Human-mouse evolutionary separation occurred only about 80
million years ago, which is so recent that many freely evolving regions (i.e., under no apparent
evolutionary constraint) can be reliably aligned across at least some of their length. However, the
fraction of apparently unconstrained DNA that can be aligned is highly dependent on genomic
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location [12, 10], with one study [10] finding that the percentage of nonrepetitive (e.g., not Alu or
L1 sequences) and non-coding DNA that can be aligned varied from 11% (in the ERCC2 region)
to 99% (in the HOXA cluster).

A number of authors have observed variability of divergence rates. Wolfe et al. [24] found
that the rate of silent substitutions in protein-coding regions (i.e., nucleotide changes that do not
affect the encoded amino acid sequence) varies widely among genes. These authors and others
have concluded that silent substitutions are neutral, or nearly so, implying that the rate of neutral
evolution is highly variable, depending on position in the genome. Koop [19] observed that some
comparisons of noncoding DNA between humans and mice show a very high level of conservation
in presumably non-functional intervals, other regions show very low conservation, and still others
are intermediate. Matassi et al. [21] show that silent substitution rates in two genes separated
by at most one centiMorgan (roughly one or two megabases) are more similar to each other on
average than are a randomly chosen gene pair, suggesting that genomic domains of similar neutral
evolutionary rate may exist on a megabase scale.

This variability makes it difficult to give an objective and appropriate criterion for deciding if
a genomic interval deserves to be classified as “more conserved than can be expected by chance
alone”. For instance, consider the three panels in Figure 1 from a “percent identity plot”, or
PIP. This PIP provides a graphical summary of a few of the local alignments of 1.49 Mb of DNA
sequence from the velocardiofacial syndrome (VCFS) region of human chromosome 22, for which
almost all of the orthologous mouse sequence is available [20]. Within those local alignments, three
gap-free segments of roughly comparable lengths and percent identities are highlighted. Based just
on these lengths and identities, it is difficult to rank their relative strengths, particularly if one
wants to account for the very different degrees of apparent background divergence among the rows
of Figure 1. The point of this paper is to provide an objective and statistically rigorous method for
ranking the matches according to which of them is less likely to have arisen by chance.

It is critical that this variation in rate of neutral evolution be better quantified and understood.
Genomic intervals identified as “highly conserved” are candidates for a number of experimental
tests for functionality, including tests to see whether they are expressed as genes or regulate such
expression. Such experiments, particularly those for regulatory function, are expensive and tedious,
so it is important that identification of candidate regions have as rigorous a basis as possible. It is
particularly desirable that this be done with a strong statistical underpinning, e.g., to quantify the
extent to which an interval is more conserved than can be explained by chance.

Our approach to aligning genomic sequences begins by computing a set of local alignments
between sequences of genomic DNA, with the intention of capturing precisely the detectable ho-
mologies. For the VCFS data, we began by identifying interspersed repeats in the human sequence
using the RepeatMasker program (A. Smit and P. Green, unpublished), then removing from the
human sequence all interspersed repeats that we believe to have inserted after the human-mouse
split. In addition, all annotated exons were removed, since our primary interest is in finding func-
tional non-coding intervals. Removing these two classes of segments reduced the 1.49 Mb sequence
to about 1.06 Mb. Older repeats were “soft masked”, i.e., not allowed to align in preliminary
computations that determine the rough locations of alignments, but allowed to align during the
final (gapped alignment) phase. Alignments were computed by the blastz program [22] with default
parameters.

Our statistical analysis of these alignments is performed in two phases. First, we use a hidden
Markov model (HMM) to detect long-range patterns in the regional variation of divergence level.
The basic goal is to identify a few classes of genomic regions according to the extent that the human
sequence can be reliably aligned with mouse data, and to do so in a statistically sound manner that
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Figure 1: Percent identity plot (PIP) of some human-mouse alignments. Triangles and other icons
along the top indicate positions of interspersed repeats and low-complexity regions found in the
human sequence by the RepeatMasker program. Each tiny horizontal line in the PIP indicates the
human positions and percent nucleotide identity of a interval between consecutive gaps in a local
alignment with the mouse genomic sequence.

makes a minimal number of a priori assumptions. The second phase describes the alignments in
each of these classes with a Markov model (as distinct from a hidden Markov model), which is used
to determine statistical significance in a manner appropriate for the level of divergence seen in that
type of genomic region. Significance is expressed as a p-value, giving the probability that a match
of equal or higher score could happen by chance. We now sketch these two phases in turn.

With our approach to aligning genomic sequences, regional variation in divergence level is re-
vealed most directly by differences in the percentage of nucleotides covered by local alignments,
rather than by the percent of nucleotide identity within alignments. For instance, in one study
[12], human-mouse alignments showed a spread of 6.4% to 78.1% in the fraction of non-repetitive,
non-coding DNA that aligns, but with only a spread of 64.3% to 75.0% in percentage of nucleotide
identity within those local alignments. Indeed, the two regions with the highest percent identity
had the lowest fraction of aligning DNA, indicating that percent identity is a poor discriminator
of divergence level. Accordingly, to embody divergence level, we temporarily set aside information
about the internal structure of local alignments and represented the genomic region by a 1.11 Mb
sequence of 0’s and 1’s; it alternates between runs of 0’s, with a 0 for every unaligned human po-
sition, and runs of 1’s, with a 1 for every column of a local alignment. (Thus, a local alignment
generates a number of 1’s that exceeds the length of the aligned human segment by the total length
of inserted mouse nucleotides, i.e., gaps in the human sequence.)

Our approach to training an HMM, as described in the next section, models the sequence of
0’s and 1’s with four “states”, which can be thought of as “modes” hidden in the data. Table 1
summarizes some of the states’ characteristics. When in one of the states, the sequence consists
almost entirely of 0’s (i.e., unaligned), in the second it is almost entirely 1’s, and the other two
have intermediate frequencies (23.8% and 72.1%) of 0’s. The last row of Table 1 gives the state’s
stationary frequency.
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State 1 2 3 4
unaligned 99.1% 23.8% 72.1% 0.14%
occupied 32.0% 26.8% 35.4% 5.7%

Table 1: Characteristics of the HMM’s four states. First row: the percentage of unaligned base
pairs in each state. Second row: the stationary frequency of each state.

Assigning p-values to gap-free alignments, such as the three intervals highlighted in Figure 1,
requires modeling the internal structure of alignments. To do this, we replace each 0 in the 1.11
Mb sequence by U (for Unaligned), and replace each 1 by either G (for position in a Gap), M (for
Matched to an identical symbol) or N (Non-match). Given a long gap-free alignment, we want to
determine the probability that an equivalent or stronger run of consecutive Match and Non-match
positions could happen by chance in a region with a similar degree of alignability. This provides a
“p-value” for any strong gap-free alignment, analogous to those made popular in bioinformatics by
Blast [1]. Indeed, the theoretical underpinnings [18] of our approach to p-values are a generalization
to Markov models of the Karlin-Altschul method, as originally described [17] for the simpler case
of a sequence generated from independent identical distributions (i.i.d).

Table 2 presents the p-values, as computed by the methods described here, of the three segments
highlighted in Figure 1. Compared to the third segment, the first segment is somewhat shorter and
has a marginally lower percentage of matched base pairs, hence its score is lower, e.g., 111 vs. 121
if we score 1 for a match and –1 for a non-match. However, because the first segment is located
in a region with poorer alignability, it is statistically more significant than the third segment, as
indicated by the p-values.

Segment 1 2 3
Length 161 162 170

Percentage of M 84.5% 92.0% 85.4%
score (M=1, N=–1) 111 137 121

p-value 0.0075 0.0013 0.0081

Table 2: The p-values of the three segments indicated in Figure 1.

The next two sections cover the details of the two phases of our statistical analysis, i.e., training
an HMM to model the high-level variation in divergence and computing p-values, respectively.
Readers of those sections are assumed to be familiar with basic concepts of probabilistic analysis of
DNA sequences, roughly at the level of the first three chapters of the book by Durbin, Eddy, Krogh
and Mitchison [11]. The most difficult details are placed in an Appendix. At the end, we discuss
generalizations of our results that remain to be explored and suggests ways that our methods may
be used to obtain insight into several basic questions concerning the mechanisms and tempo of
evolutionary processes.

II Modeling with an HMM

As described in the previous section, we represent a set of local alignments of a “reference” nucleotide
sequence with some other sequence as a sequence of symbols U, G, M and N, whose length exceeds that
of the reference sequence by the total lengths of all gaps in that sequence within a local alignment.
For the first phase of the statistical analysis, we ignore the distinction between G, M and N, and work
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with a sequence of 0’s (instead of U) and 1’s (instead of G, M and N). The goal of this section is to
extract “modes” from this sequence of 0’s and 1’s.

A classic HMM for this sequence, in which each state emits either 0 or 1 according to a certain
distribution determined solely by the state, would work poorly. The problem lies in the fact that
the run lengths of 0’s and 1’s are very large. The histograms of the run lengths of 0’s and 1’s
are provided in Figure 2. Since states in an HMM represent modes of context in the sequence, we
expect a region of a fixed state to cover multiple runs of 1’s and 0’s. Otherwise, the separation of the
sequence into regions of different states is over-localized. For a region in state i, every observation
0 or 1 is generated independently according to the probability mass function (p0(m), p1(m)). The
expected run lengths of 0’s and 1’s are 1/p1(m) and 1/p0(m) respectively. Hence, if p1(m) and
p0(m) are not very close to the extreme values 0.0 and 1.0, the expected run lengths of both 1 and
0 cannot be very large. For example, if p1(m) < 0.9, the expected run length of 1 is no greater than
10, and the probability of a run length being larger than 50 is only 0.005. However, as indicated
in Figure 2, a vast majority of the run lengths in the sequence are longer than 50. For the run
lengths of 1’s, 99.98% of them are longer than 50. We thus expect an HMM that fits the sequence
well tends to have states with either very high values or very low values of p1(m). The long runs
of 1’s are generated by states with p1(m) close to 1.0 and the long runs of 0’s are generated by
states with p1(m) close to 0.0. The estimated underlying states switch from one to another almost
in synchronization with the switch from a run of 1’s to a run of 0’s or vice versa. Such an HMM
thus provides little information regarding the context in the sequence.
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Figure 2: Histograms of the run lengths of 0’s and 1’s in the alignment sequence. The ranges of the
histograms displayed are not complete.

The inappropriateness of the basic HMM to model the alignment sequence is also demonstrated
by experiments. For instance, we trained a basic HMM with 11 states on the entire sequence of
human chromosome 22. Except for one state with probability of occurring in the sequence as low as
6.4×10−9, all the others fall into two groups. Those in the first group have p1(m) > 0.999 and those
in the second have p1(m) < 1.0×10−15. This HMM extracts essentially two modes of context: nearly
zero percent of alignment or nearly perfect alignment. The strong dependence among adjacent
positions forces the HMM to be over-localized since the Markovian property assumed about states
is the only mechanism to account for the inter-position dependence.

We propose an extended HMM that takes into consideration the strong inter-position dependence
and in the mean time is capable of extracting modes of context. In the new model, the underlying
states are assumed to be first order Markovian, just as in the basic HMM. The difference lies in the
conditional distribution of observations given states. In the basic HMM, it is assumed that given
all the states, the conditional distribution of observation xt at position t only dependents on the
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state st at the same position, that is,

P (x1, x2, ..., xT | s1, s2, ..., sT )

= P (x1 | s1)P (x2 | s2) · · ·P (xT | sT ) . (1)

In the new model, we assume that given all the states, the conditional distribution of observation
xt at position t depends on the observation xt−1 and state st−1 at the previous position. In a
sense, the conditional independence assumption on observations in the basic HMM is replaced by a
conditional first order Markovian assumption. This Markovian property of observations embedded
in a state allows long runs to occur without compromising the role of a state in representing context.
Equation 1 is changed to

P (x1, x2, ..., xT | s1, s2, ..., sT )

= P (x1 | s1)P (x2 | x1, s1) · · ·P (xT | xT−1, sT−1) .

For an HMM with M states, we need to estimate 2M probability mass functions: P (xt = i | xt−1 =
j, st−1 = m), i, j = 0, 1, m = 1,...,M , as well as the state transition probability matrix, ||am,n||,
m,n = 1, ...,M . For notational simplicity, we write pj,i(m) = P (xt = i | xt−1 = j, st−1 = m). The
new HMM is referred to as the HMM with Markovian observations (HMMMO).

The structure of the model allows us to use a modified version of the Baum-Welch algorithm [4].
Computation time is proportional to the product of the sequence length and the number of states;
so is the memory consumed. When dealing with sequences of length in the order of tens of millions,
a few gigabyte of memory is required. However, the memory requirement can be reduced to an order
proportional to the square root of the sequence length if we double the amount of computation. We
present here the original version of the estimation algorithm.

To estimate an HMM with Markovian observations by the maximum likelihood criterion, the
EM algorithm [3, 4] is applied. The EM algorithm estimates a model by updating the parameters
iteratively. Let Lm(t) denote the conditional probability of being in state m at position t given
all the observations, and Hm,n(t) denote the conditional probability of a transition from state
m at position t to state n at position t + 1 given all the observations, both computed from a
current set of parameters estimated. The re-estimation formulae for the transition probabilities
am,n, m,n = 1,...,M , and the probabilities pj,i(m), i,j = 0,1, m = 1,...,M , are

pj,i(m) =

∑T−1
t=1 Lm(t)I(xt = j)I(xt+1 = i)

∑T−1
t=1 Lm(t)I(xt = j)

am,n =

∑T−1
t=1 Hm,n(t)

∑T−1
t=1 Lm(t)

,

where as usual I(·) is the indicator function that equals 1 when the argument is true and zero
otherwise. The probabilities Lm(t) and Hm,n(t) can be computed efficiently by the forward-backward

algorithm. This algorithm was developed as a part of the Baum-Welch algorithm. For the HMMMO,
because of the Markovian assumption on observations given states, the forward-backward algorithm
is modified correspondingly.

Define the forward probability αm(t) as the joint probability of observing the first t xτ ’s, τ =
1, ..., t, and being in state m at position t. This probability can be evaluated by the following
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recursive formula

αm(1) = πmpx1(m) 1 ≤ m ≤ M

αm(t) =
M

∑

n=1

αn(t − 1)pxt−1,xt
(n)an,m

1 < t ≤ T, 1 ≤ m ≤ M .

The probabilities πm, m = 1,...,M are the initial probabilities of the M states, which can be derived
from the transition probability matrix if we assume πm as the stationary frequency of state m. The
probabilities pi(m), i = 0,1, m = 1,...,M are the marginal probabilities of the observations 0 and 1
in state m. Assuming pi(m) as the stationary frequency of i in state m, we can compute it from
the conditional distributions pj,i(m), j = 0,1.

Define the backward probability βm(t) as the conditional probability of observing xτ ’s after
position t, τ = t + 1, ..., T , given the state at position t is m and the observation at t is xt. As with
the forward probability, the backward probability can be evaluated using the following recursion

βm(T ) = 1

βm(t) = pxt,xt+1(m)
M

∑

n=1

am,nβn(t + 1) , 1 ≤ t < T .

The probabilities Lm(t) and Hm,n(t) are solved by

Lm(t) = P (st = m | x) =
P (x, st = m)

P (x)

=
1

P (x)
αm(t)βm(t)

Hm,n(t) = P (st = m, st+1 = n | x)

=
1

P (x)
αm(t)am,npxt,xt+1(m)βn(t + 1) ,

where P (x) is the joint probability of observing all xt’s, t = 1, ..., T , and P (x) =
∑M

m=1 αm(t)βm(t)
for any t.

The number of states in the HMM is chosen by the Bayesian Information Criterion (BIC) [23].
By BIC, the optimal model maximizes the penalized log likelihood log P (x) + k

2
log T , where k,

increasing with the number of states, is the number of parameters in the HMM. For an HMMMO
with M states, the number of parameters to specify the transition matrix ||am,n|| is M(M −1); and
the number of parameters needed to describe the Markov chain of 0 and 1 in each state is 2. Hence
the total number of parameters in an HMMMO is M(M−1)+2M = M 2+M . The number of states
selected by BIC for the VCFS sequence is 4. Constraints can also be put on the state transition
probabilities am,n to reduce the complexity of an HMM. For instance, we may constrain am,n to be
the same for all n 6= m. One motivation to use the constrained model is that the estimated values
of am,n, n 6= m, are often at the order of 10−5 or smaller. A sequence of length around one million,
such as the VCFS region, cannot provide sufficient amount of data to estimate these am,n. More
robust estimation can be achieved by using the model with reduced complexity. The preference
to the constrained model is also supported by BIC as the penalized log likelihood of this model is
higher than that of the unconstrained one.
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According to the HMM, a subsequence {xt1 , xt1+1, ..., xt2} with states fixed as m is a Markov
chain switching between two symbols: 0 and 1. The transition probabilities of the Markov chain are
pi,j(m), i, j = 0, 1. Matched, Non-matched and Gap base pairs are not distinguished by this Markov
chain. To model the alignment sequence with 4 possible symbols, we assume that within a run of 1’s
in state m, the sequence of M, N, and G, denoting Matched, Non-matched and Gap correspondingly,
is a Markov chain. The transition probabilities of the Markov chain vary with state m. The initial
probabilities of M, N, and G are πM(m), πN(m), and πG(m). We have πG(m) = 0.0 since at the initial
position of a run of 1’s, Gap never occurs. Denote the transition probabilities between M, N, and
G within a run of 1’s in state m by āγ,ζ(m), γ, ζ = M, N, G, m = 1, 2, ...,M . Denote the sequence
of 4 symbols by {y1, y2, ...yT}. The sequence {x1, x2, ..., xT} is formed by setting xt = 0 if yt = U

(Unaligned), and xt = 1 otherwise. Given the HMM trained from {xt}
T
t=1, the maximum likelihood

estimation of āγ,ζ(m) is

āγ,ζ(m) =

∑T−1
t=1 Lm(t)I(yt = γ)I(yt+1 = ζ)

∑

ζ

∑T−1
t=1 Lm(t)I(yt = γ)I(yt+1 = ζ)

πγ(m) =

∑T−1
t=1 Lm(t)I(xt = 0, xt+1 = 1)I(yt+1 = γ)

∑T−1
t=1 Lm(t)I(xt = 0, xt+1 = 1)

γ, ζ = M, N, G.

The above estimation is essentially the computation of the empirical frequencies of all the transitions.
Each count is weighted by the posterior probability of being in state m at the corresponding position
if the Markov chain to be estimated is for state m.

To sum up, within one state m, the sequence of 4 symbols is modeled by two embedded Markov
chains. The first Markov chain specifies statistically the transition between 0 (unaligned base pairs)
and 1 (all the other possible base pairs). The second Markov chain specifies the transition between
M, N, and G within a run of 1’s. It is straightforward to see that the statistical model characterized
by these two embedded Markov chains is equivalent to a Markov chain with the 4 symbols: U, M, N,
and G. Denote the transition probabilities of this Markov chain by aγ,ζ(m), γ, ζ = U, M, N, G. Then,

aγ,ζ(m) =















p0,0(m) γ = ζ = U

p0,1(m)πζ γ = U, ζ 6= U

p1,0(m) γ 6= U, ζ = U

p1,1(m)āγ,ζ(m) γ 6= U, ζ 6= U .

Denote the Markov chain in state m by Pm.

III Significance of High-Scoring Segments

Given a long gap-free alignment composed of only matched and non-matched base pairs, we are
concerned with its statistical significance. We assign each possible symbol γ ∈ {U, M, N, G} a score
Z, e.g., ZM = 1, ZN = −1, ZU = ZG = −L, where L � 1. The score of a segment of symbols is
defined as the sum of the scores of all the positions in the segment. A long gap-free alignment with
high percentage of M yields a high segment score.

Theorems in Karlin and Dembo [18] laid the foundation for assessing the statistical significance
of a high-scoring segment in a Markov chain. These theorems enable us to compute the limit
probability of a sequence generated randomly by the Markov chain having its maximal segment
score exceeding that of a given segment, or in some cases, to obtain bounds for the probability. The
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limit is taken with the sequence length approaching infinity. A low probability value indicates the
high score of the segment is statistically significant. Being imprecise with terminology, we refer to
the probability as the p-value of the segment for simplicity. If we want to test the null hypothesis
that a sequence is generated by a Markov process, the maximal segment score of the sequence will
be identified. The null hypothesis is rejected with p-value equal to the probability of a sequence
generated randomly by the same Markov process containing segments with higher scores. Next, we
discuss the application of theorems in [18] to our scoring scheme.

Consider a Markov chain P with r possible symbols, denoted by {Y1, Y2, ..., YT}, Yt ∈ Γ =
{ζ1, ζ2, ..., ζr}. Let the transition probability matrix of the Markov chain be P = ||pγζ ||, γ, ζ ∈ Γ.
For each transition from symbol ζi to ζj, a score Zζi,ζj

is assigned. Assigning a score to each
symbol ζj can be viewed as a special case of assigning scores to transitions, in which Zζi,ζj

are
the same for a fixed ζj and different ζi’s. Given a realization {yt}

T
t=1 of the Markov chain with

y0 = γ, the score of a segment {yt1 , ..., yt2} is
∑t2−1

τ=t1
Zyτ ,yτ+1 ; and the maximal segment score is

Mγ(T ) = max1≤t1≤t2≤T

∑t2−1
τ=t1

Zyτ ,yτ+1 .
To apply theorems in [18], we make the following assumptions about the Markov chain P :

1. The Markov chain P is irreducible and aperiodic.

2. The negative drift condition is

E[Z] =
∑

ζi,ζj

πζi
pζi,ζj

Zζi,ζj
< 0 ,

where πζi
is the stationary frequency of ζi, determined by the transition probability matrix

P. Note pζi,ζj
is the transition probability specified in P.

3. For each symbol ζi, there exists a symbol ζj such that pζi,ζj
> 0, Zζi,ζj

> 0; and a symbol ζk

such that pζi,ζk
> 0, Zζi,ζk

< 0. Or more generally, there exists ζi and a sequence y0 = ζi, y1,

..., ym = ζi, such that P{
∑k−1

τ=0 Zyτ ,yτ+1 > 0, k = 1, ...,m − 1 | y0 = ym = ζi} > 0

If scores Zζi,ζj
, i = 1, 2, ..., r, are non-lattice [18], then

lim
T→∞

P{Mγ(T ) −
ln T

θ∗
> z} = 1 − exp(−K∗e−θ∗z) ,

where K∗ and θ∗ are constants determined by the transition probability matrix P and the scores
Zζi,ζj

. Define matrix

Φ(θ) = ||pγ,ζe
θZγ,ζ || .

The constant θ∗ is the unique positive solution of the equation ρ(θ) = 1, where ρ(θ) is the dominant
eigenvalue of the matrix Φ(θ). Algorithms for computing constants K∗ and θ∗ are presented in
Appendix.

If scores Zζi,ζj
are lattice of span δ (δ is the largest number of which all the Zζi,ζj

’s are multiples),

1 − exp(−K∗e−θ∗z)

≤ lim inf
T→∞

P{Mγ(T ) −
ln T

θ∗
> z}

≤ lim sup
T→∞

P{Mγ(T ) −
ln T

θ∗
> z}

≤ 1 − exp(−K+e−θ∗z) (2)
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where K+ = eθ∗δK∗.
For integer scores Zζi,ζj

with the maximum common divisor equal 1, the scores are lattice of span
δ = 1. We use Inequality 2 to compute the p-value of a high-scoring segment. When T is sufficiently
large, P{Mγ(T ) − ln T

θ∗
> z} is bounded between 1 − exp(−K∗e−θ∗z) and 1 − exp(−K+e−θ∗z).

For a high-scoring segment with score ln T
θ∗

+ z, the upper bound 1 − exp(−K+e−θ∗z) provides a
“conservative” p-value for the segment. Since K+ = eθ∗K∗, K+ is close to K∗ when θ∗ is close to
zero. In this case, the upper bound is close to the real probability P{Mγ(T ) − ln T

θ∗
> z}.

For the alignment sequence of 4 symbols {yt}
T
t=1, we focus on the special case of assigning a

score to each symbol. For brevity, we denote the scores by ZM = 1, ZN = −1, ZU = ZU = −L,
L � 1. Based on the HMM trained from the sequence of 0’s and 1’s, i.e., {xt}

T
t=1, a Markov chain

characterizing {yt}
T
t=1 is estimated within each state of the HMM. For the 4-state HMM, optimal

according to BIC, the Markov chain within each state is irreducible and aperiodic. The negative
drift condition is satisfied with sufficiently large L. We set L = 400 in our experiment. When L is
very large, a high-scoring segment cannot contain any G or U, since one such symbol can lower the
score of the entire segment to a negative value. Therefore, a segment with a high score is simply a
long gap-free alignment with a high percentage of M. Therefore, the exact score values assigned to
G and U have little effect on p-values, which is demonstrated by experiments.

The constants K∗, K+, and θ∗ of Markov chains Pm, m = 1, ..., 4 are listed in Table 3. The
percentage of unaligned base pairs in each state, indicating alignability, and the stationary frequency
of each state are presented in Table 1.

State 1 2 3 4
θ∗ 0.0959 0.1142 0.1132 0.1079
K∗ 0.0001 0.0261 0.0085 0.0325
K+ 0.0001 0.0292 0.0095 0.0362

Table 3: Constants of the Markov chain in each state. These constants are used for computing
p-values.

Assume a state sequence {st}
T
t=1 is generated randomly according to the Markov chain governing

the states of an HMM. The initial probabilities of the states are the stationary frequencies of the
states πm, m = 1, 2, ...,M , where M = 4 for the HMM trained from the VCFS sequence. A sequence
{y′

t}
T
t=1 of symbols U,G,M, and N are generated based on the state sequence {st}

T
t=1. Within a region

of a fixed state m, t1 ≤ t ≤ t2, the sequence {y′
t}

t2
t=t1

is generated by the corresponding Markov chain
in state m, Pm. When T → ∞, with probability 1, the percentage of positions in state m is πm.
Hence when T is large, the number of positions in state m is approximately πmT . By Inequality 2,
the probability that the maximal segment score of positions in state m exceeds z+ ln πmT

θ∗(m)
is bounded

as follows

1 − exp(−K∗(m)e−θ∗(m)z)

≤ P{Mγ(T,m) > z +
ln πmT

θ∗(m)
}

≤ 1 − exp(−K+(m)e−θ∗(m)z)

Notation θ∗(m), K∗(m), and K+(m) are used to stress that these constants are determined by
the Markov chain Pm. The fact that positions in state m may not be consecutive is ignored as
the average run length of one state is much larger than the lengths of high-scoring segments we

10



consider. In the sequel, sequences in discussion are assumed to be realizations of the 4-state HMM
with a Markov chain embedded in each state.

The p-value as a function of the segment score z̄ for the Markov chain of each state m is

pv(z̄, m) = 1 − exp(−K+(m)e−θ∗(m)(z̄− ln πmT
θ∗(m)

)) ,

which is plotted in Figure 3.
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Figure 3: The p-value as a function of the segment score for the Markov chain in each state.

Suppose we compare the statistical significance of two high-scoring segments in two regions with
great difference in divergence rate. To take into account the “background” difference of the two
segments, for each region, we compute the conditional probability distribution of the state of a
randomly selected position from the region given the entire observed sequence. Assume a region
ranges from t1 to t2 and t is a position randomly selected from the region, the conditional probability
P{st = m | y1, y2, ..., yT} is

P{st = m | y1, y2, ..., yT} =

∑t2
τ=t1

Lm(τ)

t2 − t1 + 1
,

where Lm(τ) is the conditional probability of position τ being in state m given the observed se-
quence {y1, y2, ..., yT}. The forward-backward algorithm is used to compute Lm(τ). If a state is
selected randomly according to the distribution P{st = m | y1, y2, ..., yT}, m = 1, 2, ...,M , then
the probability of the maximal segment score of positions in the state exceeding a score z̄ is the
weighted sum of the p-values pv(z̄, m), that is,

p̄v(z̄) =
M

∑

m=1

P{st = m | y1, y2, ..., yT}pv(z̄, m) .

We use p̄v(z̄) as a measure of the statistical significance of a segment with score z̄ in the region t1 ≤
t ≤ t2. For simplicity, we refer to p̄v(z̄) as the p-value of a segment with score z̄. Although pv(z̄, m)
decreases with the increase of z̄ for all m, p̄v(z̄), incorporating information about background
alignability, may yield a lower value for smaller z̄ if the segment locates in a region with poorer
alignability and hence is more significant relative to its background.

11



To compute the p-value of a segment without its background region specified, we use a window
centered around the segment as the background. The window size is the average run length of a
state in the HMM. For the 4-state HMM trained from the VCFS sequence, the average number
of positions staying in one state is about 14,200. Table 2 presents the p-values of three segments,
which locate separately in the three PIP panels in Figure 1. Background regions used for the
three segments are windows centered around them. Note that due to the poor alignability of its
background region, the first segment has a smaller p-value than the third one although its score is
lower.

IV Example: γ-globin regulatory element

This section illustrates the generality of our use of Markov models of alignments to assign a statistical
significance to highly conserved regions. We show that the approach can be applied to multiple (as
well as pairwise) alignments, and can be used to find regions with high levels of divergence (as well
as similarity). We also illustrate some of the flexibility in assigning scores to columns.

In higher primates, the γ-globin gene is expressed in the fetus, whereas in lower primates it is
expressed earlier during development. For instance, in humans (which have two nearly identical
copies of the gene), it is expressed fetally, while lemurs express it in the embryo. To find the signals
in genomic DNA responsible for this difference, one might align, say, the 1000 bp immediately
upstream (a typical location for regulatory elements) of the α-globin gene for several higher primates
and several lower primates, then look for regions where the sequences from the higher primates agree
with each other but not with the lower primates.

We did just that, using the sequences from human, rhesus monkey and woolly monkey (higher
primates), as well as tarsier and galago (lower primates). Sequences were aligned using the Multi-
PipMaker Web site [22]:

http://bio.cse.psu.edu/
Frequently, gene regulation is performed by transcription factors that permit a certain level of

deviation from the consensus binding pattern. Hence, we did not want to require absolute identity
among the three higher primate sequences. Define an alignment column to be of class 1 if the three
higher primates have the same nucleotide and each lower primate has a different letter. A column
is in class 2 if the three higher primates have two different nucleotides among them and each lower
primate has a different letter. We decided to give columns a score of 4, 2 or –1, if they are in class
1, 2 or 3, respectively.

We used an algorithm [15] that locates regions of high total score within the alignment. The
algorithm runs in time proportional to the length of the alignment and identifies regions whose total
score cannot be improved either by expanding or shrinking the run of columns. (In case of a tie,
the algorithm picks the longer run.) The three highest scoring regions are as follows.

region 1 region 2 region 3
human AAAATTGGTACAT GCTAAAGGGAAGAATAAATT GGCGGCTGGCTAGGGATG

rhesus ............. .................... ..................

woolly .......TC.... .......AAG.T........ ..T..G............

tarsier GTT...T..CT.G A.C.....A.-----....G AAA.---.T.A.AT..CA

galago ------------- -------------------- A.G.---...C.A....A

class 1113331331131 13133333331211133331 132312133313133331

Here we use a dot to indicate a nucleotide that is identical to the first one in its column. Dashes
indicate a gap.
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The regions have respective scores 22, 18 and 18, and approximate p-values 0.15, 0.39 and 0.39.
The third region is known to be critical for the difference in expression patterns of the α-globin
gene between higher and lower primates, and it was initially located by visually inspecting short
pairwise alignments for sequence differences, a procedure that was called differential phylogenetic

footprinting [13].
Other ways of scoring the alignment columns do a better job of emphasizing the third region. For

instance, we can down-weight the potential contribution of gaps in the sequences of lower primates
as follows. Consider a column formerly in class 1 or 2 to be in class 4 if contains a gap symbol that
immediately follows a gap symbol in the same row. Give columns in class 4 the score 0, keeping
other scores the same. Now, region 3 scores 12, which ties it with another region for the highest
scoring segment within the aligning kilobase sequences, with an estimated significance of 0.48.

V Human Chromosome 22

The above approach to computing p-values is used to analyze the entire sequence of human chro-
mosome 22, consisted of roughly 47.7 M base pairs. The aligned sequence comprises five symbols:
U (unaligned position), G (gap), M (match), S (transition), and V (transversion). The symbols S and
V are both treated as N in the VCFS sequence. Scores assigned to these five symbols are ZM = 1,
ZS = −1, ZV = ZG = ZU = −3.

An HMM is trained on the 0/1 sequence converted from the aligned sequence by setting U to
0 and all the other symbols to 1. The optimal number of states selected by BIC for the HMM is
4. Characteristics of the four states are summarized in Table 4, the first row being percentages of
unaligned positions in the states and the second being the stationary frequencies of the states. The
constants K∗, K+, and θ∗ for computing p-values within State 2, 3, and 4 are listed in Table 5. For
State 1, the Markov chain is not irreducible because once it enters U, it will never transit to another
symbol. Hence, the Markov chain in this state cannot yield a positive scoring segment when it
becomes stationary. State 1 apparently results from the nearly 13 M straight U’s at the beginning
of the chromosome 22 sequence.

State 1 2 3 4
unaligned 99.94% 63.85% 86.84% 28.33%
occupied 28.89% 31.22% 19.73% 20.16%

Table 4: Characteristics of the four states in the HMM trained on the chromosome 22 sequence.
First row: the percentage of unaligned base pairs in each state. Second row: the stationary frequency
of each state.

State 2 3 4
θ∗ 0.1276 0.1298 0.1115
K∗ 0.0089 0.0028 0.0158
K+ 0.0101 0.0032 0.0177

Table 5: Constants of the Markov chains in 3 states of the HMM trained on the chromosome 22
sequence. These constants are used for computing p-values.

The p-value as a function of the score based on each Markov chain in State 2, 3, and 4 is plotted
in Figure 4. Comparing with the other two states, State 4 corresponds to the most conserved
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background, so a segment with a fixed score arisen in this state is least significant, reflected by
the highest p-value. State 3 has the highest divergence rate among the three and yields the lowest
p-values consequently.
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Figure 4: The p-value as a function of the segment score for the Markov chains in State 2, 3, and
4 of the chromosome 22 sequence.

To demonstrate the effect of different divergence rates on the computation of p-values, the p-
values of a collection of segments scoring from 110 to 170 are plotted in Figure 5. This collection is
not the complete set of segments in the chromosome 22 sequence with scores in that range. Shown
in the figure are only those with p-values below 0.1 and that in the mean while are at the high end
or the low end of values for a given score. It is demonstrated that the p-value of a segment may
differ enormously due to different levels of background conservativeness.

110 120 130 140 150 160 170
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

scores

p−
va

lu
e

Figure 5: The p-values of a set of high scoring segments.

In Figure 6, an example region with a number of high scoring segments is shown. The first three
panels plot the posterior probability of being in State 2, 3, and 4 at each base pair position given
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Figure 6: An example region in the aligned chromosome 22 from position 35.5M to 35.9M. (a) The
posterior probability of being in State 2, (b) The posterior probability of being in State 3, (c) The
posterior probability of being in State 3, (d) The scores of high scoring segments displayed at their
center positions in this region, (e) Corresponding p-values of these segments.
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the entire sequence. State 1 is not displayed as the posterior probability of being in it is nearly zero
across this entire region. In addition, the posterior probabilities of being in the four states sum up
to 1 and hence possess only 3 degrees of freedom. To save memory, the posterior probabilities are
averaged across every 100 base pairs. A large probability in State 4 indicates a highly conserved
region. Segments with the same score tend to have higher p-values (less significant) if the posterior
probability of being in State 4 is large. The fourth panel shows the scores of 8 segments of lengths
around 200, marked at their center positions. The fifth panel shows the p-values of the 8 segments,
the first three of which locate in a less conserved background than do the other five. The p-value
of the third segment with score 144 is the lowest although three other segments have higher scores
of 156, 153, and 161.

It takes roughly 7 hours to train the four state HMM for the chromosome 22 sequence on a
700MHz PC with Linux OS and about 7.1 minutes to train the embedded Markov chains within
each state. To obtain p-values for segments in the aligned sequence, the posterior probability of
being in each state at each base pair position needs to be computed. These posterior probabilities
can be evaluated in one run, which takes about 7.25 minutes on the 700MHz PC, and stored for
later use. The amount of time necessary to compute the constants θ∗, K∗, K+ and to compute the
p-value of a segment using those constants and the pre-stored posterior probabilities is negligible,
substantially lower than 1 second.

VI Discussion

Partitioning the genome along the lines discussed here has the potential of determining whether the
human genome falls naturally into some number of divergence levels. Koop [19] detected three levels
of human-mouse divergence in non-coding regions, but that observation was based on inspection of
only five genomic loci. It remains to be seen whether the classification of genomic regions according
to “alignability” is discrete or continuous. A natural comparison is with isochores, i.e., genomic
regions of more-or-less constant percentage of C and G nucleotides (as opposed to A and T). The
human genome has been asserted [5, 6] to fall into five isochore types, with isochores generally being
at least 200 kb in length, and with fairly sharp boundaries between successive isochores. Even now,
with the human genome sequence largely in hand, the theory remains controversial.

The existence of differences in evolutionary rate between different parts of the genome should
not come as a complete surprise. It has been known for years that there are positional differences
in the rates that DNA is damaged and repaired, a fact of considerable interest to those studying
evolution [8] and cancer [7]. However, a mechanism that creates divergence-rate differences on a
genome-wide scale has yet to be identified.

A natural way to begin seeking biological explanations for these differences is to ask whether
divergence rate is correlated with other varying genomic properties, such as GC level, recombination
rate, gene density, and position in the nucleus. An exciting prospect is that segmenting the human
genome according to rate of sequence conservation with the mouse will reveal a pattern that provides
a clue to the biological mechanism for the rate variation.
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Appendix

We present here the algorithms for computing K∗ and θ∗ of a Markov chain with scores ZM = n1,
ZU = −n2, ZU = ZG = −m, where m,n1 > 0; n2 ≥ 0; and n1 and n2 are prime to each other, or
n1 = 1 and n2 = 0. To constrain high-scoring segments to gap-free alignments, we require m � n1

and m � n2. For very large m, as discussed in Section III, the exact value of m has little effect on
the constants, and hence p-values. We restrict the greatest common divisor of n1 and n2 to be 1
so that the span of scores is 1. If the greatest common divisor of n1 and n2 is not 1, we can always
scale the scores by the common divisor. Any segment score is then scaled by the same factor, so
the p-values can be computed with the new set of scores.

Readers are referred to Karlin and Dembo [18] for the general algorithms on computing K∗ and
θ∗ with integer scores of span 1. With significant computational simplification, the algorithm for
computing K∗ provided here is an approximation to the general algorithm in [18]. Errors resulted
from the approximation decay exponentially fast with m. For the scores we consider, m is usually
in the order of hundreds. Consequently, imprecision caused by the approximation is negligible.

Denote the transition probability matrix of the Markov chain by P = ||pγζ ||. The four symbols
are put in the order U, G, M, N. For instance, the entry on the second row and the third column
of P is the transition probability from G to M. The score of symbol γ is Zγ, γ ∈ S = {U, G, M, N}.
Define matrix Φ(θ) = ||pγζe

θZζ ||. The stationary mean score E[Z] =
∑

γ πγZγ , where πγ is the
stationary frequency of symbol γ according to the transition probability matrix P. E[Z] is negative
by assumption. Define I as the set of integers between −m and n1. Partition P in the form
P =

∑

i∈I P(i), where P(i) = ||p
(i)
γζ ||, p

(i)
γζ = I(Zζ = i)pγζ , where as usual I(·) is the indicator

function. In particular P(i) = 0 if i 6= n1,−n2,−m. If we write P = (p1,p2,p3,p4), where pj’s are
column vectors, then P(n1) = (0,0,p3,0), P(−n2) = (0,0,0,p4), P(−m) = (p1,p2,0,0).

The algorithms for computing K∗ and θ∗ are outlined below. The third step, which is the key
step for computing K∗, is expanded next.

1. Determine θ∗ > 0 such that ρ(θ∗) = 1, where ρ(θ) is the maximum eigenvalue of matrix Φ(θ).
As ρ(θ) is convex [18], θ∗ can by searched by a simple doubling and halving routine that
converges rapidly.

2. Determine the right frequency eigenvector u∗ = u(θ∗) of Φ(θ∗).

3. Compute matrices Q(i), i = −1,−2, ...,−m and Q =
∑−1

i=−m Q(i). Also compute G(j), j =

1, 2, ..., n1 and G =
∑n1

j=1 G(j). Q(i) and G(j) are substochastic matrices; and Q and G are

stochastic matrices. The computation of Q(i) and G(j) will be presented in a moment.

4. Determine the stationary frequency vectors of Q and G, i.e., zQ = z and wG = w.

5. Compute K∗ = v(∞)c(∞), where

c(∞) =
〈w, (I −

∑n1

j=1 G(j)e−θ∗j) 1
u∗
〉

〈w, (
∑n1

j=1 jG(j))e〉(eθ∗ − 1)

v(∞) =
〈z, (I −

∑−1
i=−m Q(i)eθ∗i)u∗〉E[Z]

〈z, (
∑−1

i=−m iQ(i))e〉
,

where I is the identity matrix, e = (1, 1, 1, 1)t, and 1
u∗

denotes the vector formed by taking
reciprocal of each element of u∗, i.e., (1/u∗

1, 1/u
∗
2, 1/u

∗
3, 1/u

∗
4)

t. The notation 〈·, ·〉 means the
inner product of the two vectors.
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To compute Q(i) and G(j), we introduce the following definitions. Let P̂(i) = (I − P(0))−1P(i). If
n2 6= 0, P(0) = 0. Hence P̂(i) = P(i). Let Du∗ = diag(u∗

1, u
∗
2, u

∗
3, u

∗
4) be the diagonal matrix with the

components of u(θ∗) on the diagonal, and T̂(i) = eθ∗iD−1
u∗ P̂(i)Du∗ . Note T̂(i) = 0 if i 6= n1,−n2,−m.

Compute G(j), j = 1, 2, ..., n1 by the following recursive formula. G(l) = 0 for l > n1.

1. G
(j)
(1) = T̂(j).

2. G
(j)
(k) = T̂(j) + T̂(−n2)

∑

l
G

(l1)
(k−1) · · ·G

(lσ)
(k−1). The sum is over the index range 1 ≤ l1, l2, ..., lσ ≤

n1, l1 + l2 + · · · lσ = j + n2 and lσ ≥ j, where σ is any positive integer that yields a valid set
of l1, · · · , lσ.

G
(j)
(k) converges to G(j) geometrically. The recursive formula is an approximation to that in [18]. If

n1 = 1, G(1) can be computed by the exact recursive formula

G
(1)
(k) = T̂(1) + T̂(−n2)(G

(1)
(k−1))

n2+1 +

T̂(−m)(G
(1)
(k−1))

m+1 .

The third term in the sum is omitted in the approximation since m � n1 and m � n2.
Compute G =

∑n1

j=1 G(j). For scores we consider, since T̂(j) = 0, if j 6= n1 and j > 0, and

T̂(n1) is of form (0,0,p,0), i.e., only the third column vector is nonzero, G(j), j = 1, 2, ..., n1, are
also of form (0,0,p,0). Hence, so is G. As G is a stochastic matrix [18], G = (0,0, e,0), where
e = (1, 1, 1, 1)t, for any n1,n2, and m.

To compute Q(i), i = −1,−2, ...,−m, first compute Q(i) for −n2 ≤ i ≤ −1 and i = −m by the
following recursive formula. Let Q(i) = 0 for i < −m.

1. Q
(i)
(1) = P̂(i). Note P̂(i) = 0 if i 6= −n2,−m and i < 0.

2. Q
(i)
(k) = P̂(i) + P̂(n1)

∑

l
Q

(l1)
(k−1)Q

(l2)
(k−1) · · ·Q

(lσ)
(k−1). The sum is over the index range −m ≤

l1, l2, ..., lσ ≤ −1, l1 + l2 + · · · lσ = i − n1, and if i = −m, lσ = −m, if i 6= −m, −n2 ≤ lσ ≤ i,
where σ is any positive integer that yields a valid set of l1, l2, ..., lσ.

Q
(i)
(k) converges to Q(i) geometrically. Matrices Q(i), −m < i < −n2 can then be computed by the

following iterative procedure. Let R = I − P̂(n1)
∑

l
Q(l1)Q(l2) · · ·Q(lη). The sum is over the index

range −n1 ≤ l1, l2, ..., lη ≤ −1 and l1 + l2 + · · · lη = n1, where η is any positive integer that yields a
valid set of l1, l2,...,lη.

1. Set i = −m + 1.

2. Q(i) = R−1P̂(n1)
∑

l
Q(l1)Q(l2) · · ·Q(lσ). The sum is over the index range i − n1 ≤ lσ ≤ i − 1,

l1, l2, ..., lσ−1 ≤ −1, and l1 + l2 + · · · lσ = i − n1.

3. Set i + 1 → i. If i < −n2, go back to step 2; otherwise, stop.

Compute Q =
∑−1

i=−m Q(i).
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