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A Greedy Algorithm for Aligning DNA Sequences
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ABSTRACT

For aligning DNA sequences that differ only by sequencing errors, or by equivalent errors
from other sources, a greedy algorithm can be much faster than traditional dynamic pro-
gramming approaches and yet produce an alignment that is guaranteed to be theoretically
optimal. We introduce a new greedy alignment algorithm with particularly good performance
and show that it computes the same alignment as does a certain dynamic programming al-
gorithm, while executing over 10 times faster on appropriate data. An implementation of
this algorithm is currently used in a program that assembles the UniGene database at the
National Center for Biotechnology Information.
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1. INTRODUCTION

Let A 5 a1a2 . . . aM and B 5 b1b2 . . . bN be DNA sequences whose initial portions may be identical
except for sequencing errors. Our goal is to see whether they are, in fact, extremely similar and, if so,

how far that similarity extends. For instance, if one but not both of the sequences has had introns spliced
out, the similarity might extend only to the end of the � rst exon. The fact that only sequencing errors
are present, rather than evolutionary changes, means that we should not utilize “af� ne” gap costs (which
penalize each run of consecutive gap columns an additional “gap open” penalty), and this simpli� es the
algorithms. For this discussion, let us assume an error rate of 3%.

To see how far the initial identity extends, we can set i and j to 0 and execute the following while-loop.

while i , M and j , N and ai 1 1 5 b j 1 1 do

i ¬ i 1 1; j ¬ j 1 1

Let the loop terminate when i 5 k, i.e., where k 1 1 is the smallest index such that ak 1 1 65 bk 1 1, and suppose
the mismatch is caused by a sequencing error. We expect that restarting the while-loop immediately beyond
the error will determine another run of, say, 30 identical nucleotides (because of the 3% error rate). We
consider three kinds of errors. The case when ak 1 1 and/or bk 1 1 is determined incorrectly (i.e., a substitution
error) is handled by adding 1 to both i and j then restarting the while-loop; existence of an extraneous
character in A is handled by raising i by 1 and restarting the loop; an extra nucleotide in B is treated by
incrementing j and restarting the while-loop.

We expect that one of the three while-loops will iterate perhaps 30 times, whereas the other two will
terminate almost immediately. Suppose for the moment that we’re lucky and this happens. In effect, we’ve
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explored three adjacent diagonals of the dynamic programming grid (also called the edit graph). The search
is faster than dynamic programming for two reasons. First, many grid points are entirely skipped, since
only one of the diagonals was explored beyond a couple of points. Second, each inspected grid point
only involves raising two pointers and comparing the characters they point to. In contrast, the dynamic
programming algorithm inspects every grid point in the band and does so with a three-way comparison
using arithmetic involving scoring parameters.

The faster approach, which we call the greedy algorithm, has been generalized and studied extensively
by computer scientists (Miller and Myers, 1985; Myers, 1986; Ukkonen, 1985; Wu et al., 1990). It has
also been adapted to build several practical programs for comparing DNA sequences (Chao et al., 1997;
Florea et al., 1998). The main contribution of this paper is a theoretically sound method for pruning the
search region.

Returning to the above scenario, where we explore three adjacent diagonals, we see that two types
of events can confound the identi� cation of which sequencing error occurred and/or of the subsequent
run of identical nucleotides. First, it can happen that all three while-loops terminate quickly, because the
next sequencing error appears after only a few basepairs. Second, two of the while-loops may iterate an
appreciable number of times, because the search has reached a low complexity sequence region, such as
a mono- or dinucleoide repeat. In addition to these dif� culties, there is the question of how to determine
when the end of the similar region has been reached.

The X-drop approach (Altschul et al., 1990; Altschul et al., 1997; Zhang et al., 1998a,b) provides a
rather natural solution to these problems. The width of the region being searched, i.e., the number of
adjacent diagonals, expands at regions of low-sequence complexity or concentrated sequencing errors. In
addition, the mechanism that limits the band width will automatically provide an appropriate termination
condition.

We begin by formulating an X-drop alignment algorithm that uses dynamic programming. We then
develop a greedy X-drop algorithm that is guaranteed to compute the same results as does the dynamic
programming algorithm, provided that the alignment scores satisfy ind 5 mis ¡ mat=2, where ind , 0,
mis , 0 and mat . 0 are the scores for an insertion/deletion, a mismatch, and a match, respectively. (A gap-
open penalty is not allowed.) After brie� y describing an application of the greedy algorithm to align very
similar bacterial genomic sequences, we close by sketching several generalizations of our methods to more
� exible alignment scoring schemes. These generalizations are appropriate when comparing very similar
sequences that differ through evolution, such as homologous sequences from a human and a chimpanzee.

2. AN X-DROP ALGORITHM

Consider the problem of aligning initial portions of the sequences A and B . In practice, we will frequently
want the alignment to immediately follow positions in A and B that have been matched by some other
means, but that situation is not appreciably different. Our goal is to � nd a highest-scoring alignment
of sequences of the forms a1a2 . . . ai and b1b2 . . . b j , for some i µ M and j µ N that are chosen to
maximize the score. For given i and j , de� ne S (i, j) to be the score of the best such alignment, where we
add mat . 0 for each column aligning identical nucleotides, mis , 0 for each column aligning differing
nucleotides, and ind , 0 for each column in which a nucleotide is paired with the gap symbol. Thus
S (0, 0) 5 0 (since the alignment with zero columns scores 0) and if i . 0 or j . 0, then S (i, j) satis� es
the following recurrence relation:

S (i, j ) 5 max

8
>>><

>>>:

S (i ¡ 1, j ¡ 1) 1 mat if i . 0, j . 0 and ai 5 b j

S (i ¡ 1, j ¡ 1) 1 mis if i . 0, j . 0 and ai 65 b j

S (i, j ¡ 1) 1 ind if j . 0

S (i ¡ 1, j) 1 ind if i . 0.

The recurrence relation immediately provides algorithms for computing S (i, j). Positions (i, j ) need to
be visited in some order such that all positions (i ¡ 1, j ¡ 1), (i, j ¡ 1) and (i ¡ 1, j) used in the de� nition
of S (i, j) are visited before (i, j) is considered. It is helpful to think of S as being de� ned on a rectangular
grid, where S(i, j ) is the value at the grid point with horizontal coordinate i and vertical coordinate j ; see
Figure 1.

Figure 2 presents such a “dynamic programming” method. To achieve a symmetric treatment of rows
and columns, we � ll in the S -values along antidiagonals, where antidiagonal k is the set of all points (i, j )
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FIG. 1. Pruning of small S-values. The white boxes on antidiagonal k ¡ 1 designate points where S(i, j ) . ¡ 1.
S(i, j ) on antidiagonal k is computed for i 2 [L , U 1 1], after which entries whose scores are too small are reset to
¡ 1, and any such positions at the ends of the white boxes are pruned away giving L 0 and U 0.

1. T 0 ¬ T ¬ S (0, 0) ¬ 0
2. k ¬ L ¬ U ¬ 0
3. repeat
4. k ¬ k 1 1
5. for i ¬ dLe to bUc 1 1 in steps of 1

2 do
6. j ¬ k ¡ i
7. if i is an integer then

8. S (i, j ) ¬ max

8
>><

>>:

S (i ¡ 1
2 , j ¡ 1

2 ) 1 mat=2 if L µ i ¡ 1
2 µ U and ai 5 b j

S (i ¡ 1
2 , j ¡ 1

2 ) 1 mis=2 if L µ i ¡ 1
2 µ U and ai 65 b j

S (i, j ¡ 1) 1 ind if i µ U
S (i ¡ 1, j) 1 ind if L µ i ¡ 1

9. else

10. S (i, j ) ¬ S (i ¡ 1
2 , j ¡ 1

2 ) 1

(
mat=2 if ai 1 1

2
5 b j 1 1

2

mis=2 if ai 1 1
2

65 b j 1 1
2

11. T 0 ¬ maxfT 0, S(i, j )g
12. if S (i, j ) , T ¡ X then S(i, j ) ¬ ¡ 1
13. L ¬ minfi : S(i, k ¡ i) . ¡ 1g
14. U ¬ maxfi : S(i, k ¡ i) . ¡ 1g
15. L ¬ maxfL , k 1 1 ¡ N g
16. U ¬ minfU, M ¡ 1g
17. T ¬ T 0

18. until L . U 1 1
19. report T 0

FIG. 2. A dynamic-programming X-drop algorithm.
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such that i 1 j 5 k. We keep track of the best alignment score, denoted T , detected for a grid point
lying on an antidiagonal before the current one. If we discover that S(i, j) , T ¡ X , where X ¶ 0 is
user-speci� ed, then we set S(i, j) to ¡ 1 so as to guarantee that S (i, j) will not play a role in subsequent
evaluations of S . Informally, the rationale is that if the score of an optimal alignment of a1a2 . . . ai and
b1b2 . . . b j falls more than ¡ X below the best score seen so far, then we don’t want to consider extensions
of that alignment. For each antidiagonal, we determine the lower and upper bounds for the x -coordinate
(horizontal position), denoted L and U , where � nite values of S remain in that antidiagonal. Then we know
a priori that any � nite values in the next antidiagonal must lie at a position with X -coordinate between L
and U 1 1. The values in those positions are computed and tested for the “T ¡ X ” condition, and the new
values of L and U are found by trimming points where S 5 ¡ 1 from the ends of the range L to U 1 1.
See Figure 1. Lines 15–16 of Figure 2 guarantee that the search will keep to legitimate points (i, j) where
i µ M and j µ N . (Lines 13–14 use the convention that min ; 5 1 and max ; 5 ¡ 1, where ; denotes
the empty set.)

In a straightforward algorithm for antidiagonalwise computation, scores in antidiagonal k are computed
from scores in antidiagonals k ¡ 1 and k ¡ 2. Our algorithm employs a device that reduces this dependence to
just diagonal k ¡ 1. We add “half-nodes” at positions halfway along a diagonal line connecting (i ¡ 1, j ¡ 1)
to (i, j), where we assign a score that is halfway between S (i ¡ 1, j ¡ 1) and S(i, j) by adding half the
cost of a match or mismatch. For the for-loop limits (line 5) we round positions of half-nodes to those of
the appropriate regular node (i.e., upward for L and downward for U ). For instance, suppose line 13 sets
L to a half-value i , i.e., where i 5 bic 1 1

2 . Since S (i, j ) is used only to compute S (i 1 1
2 , j 1 1

2 ), we
want S (i 1 1

2 , j 1 1
2 ) to be the � rst S-value found in the next loop iteration.

Note that the pruning rules of lines 13 and 14 do not change the set of (i, j ) where a � nite S -value is
computed. Their role is to make the algorithm more ef� cient. Also note that after execution of lines 13–16
there may remain i between L and U where S (i, k ¡ i ) 5 ¡ 1, as indicated in Figure 1.

3. A GREEDY ALGORITHM

Greedy alignment algorithms work directly with a measurement of the difference between two sequences,
rather than their similarity. In other words, near-identity of sequences is characterized by a small positive
number instead of a large one. In the simplest approach, an alignment is assessed by counting the number
of its differences, i.e., the number of columns that do not align identical nucleotides. The distance, D (i, j),
between the strings a1a2 . . . ai and b1b2 . . . b j is then de� ned as the minimum number of differences in
any alignments of those strings.

We will need the ability to translate back and forth between an alignment’s score and the number of its
differences, but this requirement constrains the alignment scoring parameters. Assume for the moment that
any two alignments of a1a2 . . . ai and b1b2 . . . b j having the same number of differences also have the same
score, regardless of the particular sequence entries. Pick any such alignment that has at least two mismatch
columns. One of those columns can be replaced by a deletion column followed by an insertion and, by
changing one of the sequence entries, the other mismatch can be converted to a match. The transformation
can be pictured as:

...A...G... ...A-...G...

...C...T... ...-C...G...

Here, dots mark alignment entries that are unchanged between the two alignments. This transformation
leaves the number of differences, and hence the score, unchanged, from which it follows that 2 £ mis 5
2 £ ind 1 mat . In summary, the equivalence of score and distance implies that ind 5 mis ¡ mat=2. As the
following lemma shows (see also Smith et al., 1981), that equality is suf� cient to guarantee the desired
equivalence and, furthermore, the formula to translate distance into score depends only on the antidiagonal
containing the alignment end-point.

Lemma 1. Suppose the alignment scoring parameters satisfy ind 5 mis ¡ mat=2. Then any alignment
of a1a2 . . . ai and b1b2 . . . b j with d differences has score S 0(i 1 j, d) 5 (i 1 j ) £ mat=2 ¡ d £ (mat ¡ mis).
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Proof. Consider such an alignment with J matches, K mismatches and I indels, and let k 5 i 1 j .
Then k 5 2J 1 2K 1 I , since each match or mismatch extends the alignment for two antidiagonals, while
each indel extends it by one. The alignment has d 5 K 1 I differences, while its similarity score is

mat £ J 1 mis £ K 1 ind £ I 5 mat £ (k ¡ 2K ¡ I )=2 1 mis £ K 1 (mis ¡ mat=2) £ I
5 k £ mat=2 ¡ d £ (mat ¡ mis).

For the remainder of this section, we assume that ind 5 mis ¡ mat=2. Rather than determining values
S (i, j) in order of increasing antidiagonal, the values will be found in order of increasing D (i, j ). Note that
Lemma 1 implies that minimizing the number of differences in an alignment is equivalent to maximizing its
score (for a � xed point (i, j)), and that S (i, j) 5 S 0(i 1 j, D (i, j)). In brief, knowing D (i, j ) immediately
tells us S(i, j).

The points where D equals 0 are just the (i, i ) where ap 5 bp for all p µ i , since for other (i, j) an
alignment of a1a2 . . . ai and b1b2 . . . b j must contain at least one replacement or indel. Ignoring for the
moment the X-drop condition, suppose we have determined all positions (i, j ) where D (i, j) 5 d ¡ 1. In
particular, suppose we know the values R (d ¡ 1, k) giving the x -coordinate of the last position on diagonal
k where the D -value is d ¡ 1, for ¡ d , k , d . (The kth diagonal consists of the points (i, j) where
i ¡ j 5 k.) Note that if D (i, j) , d , then (i, j) is on diagonal k with jkj , d .

Consider any (i, j) on diagonal k and where D (i, j) 5 d . Pick any alignment of a1a2 . . . ai and
b1b2 . . . b j having d differences. Imagine removing columns from the right end of the alignment that
consist of a match. In terms of the grid, this moves us down diagonal k toward (0, 0), through points
with D -value d . The process stops when we hit a mismatch or indel column. Removing that column takes
us to a point with D -value d ¡ 1. We can reverse this process to determine the D -values in diagonal k
or, to be more precise, to determine R (d , k), the x -coordinate of the last position in diagonal k where
D (i, j) 5 d. Namely, we � nd one position where D (i, j) 5 d and j 5 i ¡ k, as illustrated in Figure 3,
then simultaneously increment i and j until ai 1 1 65 b j 1 1.

The correctness of the basic greedy alignment algorithm will not be discussed in further detail, because
it is addressed by several previous publications (Miller and Myers, 1985; Myers, 1986; Ukkonen, 1985;
Wu et al., 1990). These earlier papers treat a slightly less general problem, in which mismatches are not
considered (but rather replaced by insertion-deletion pairs); however, the difference is immaterial. On the
other hand, the central step in a correctness proof of a more general algorithm is given below as Theorem 2.

What remains is to simulate line 12 of Figure 2. That is, we need a way to tell if S (i, j) , T ¡ X ,
where T is the maximum S ( p, q) over all (p, q) where p 1 q , i 1 j . This was easy to do when
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FIG. 3. Three cases for � nding a point of distance d on diagonal k. The R -values give x -coordinates of the last
positions on each diagonal with D -value d ¡ 1. We can move right from a d ¡ 1, or along a diagonal from a d ¡ 1,
or up from a d ¡ 1, in order to � nd a point that can be reached with d differences. The furthest of these points along
diagonal k must have D -value d . The � rst two moves raise the x -coordinate by 1. See line 10 of Figure 4.
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the S -values were being determined in order of increasing antidiagonal, but now we are determining the
S -values in a different order. It will be insuf� cient to simply keep the largest S-value determined so far
in the computation, but we can get by with only a little more effort. (Our argument for this depends
critically on our use of “half-nodes” in Figure 2.) Let “phase x” refer to the phase in the greedy algorithm
that determines points where D (i, j) 5 x , and let T [x ] be the largest S -value determined during phases
0 through x .

Given the values T [x ] for x , d , and knowing that D (i, j) 5 d (and hence that S (i, j) 5 S 0(i 1 j, d),
where S 0 is as in Lemma 1), how can we determine the maximum S-value over all points on antidiagonals
strictly before i 1 j? Note that there may well be points in those earlier antidiagonals whose S -value has
not yet been determined. However, any such S -value will be smaller than S (i, j ), according to Lemma 1. In
fact, any S -value on an earlier antidiagonal that exceeds S (i, j) by more than X must have been determined
a number of phases before phase d . The following result makes this precise.

Lemma 2. Suppose D (i, j ) 5 d, de� ne

d 0 5 d ¡
·

X 1 mat=2

mat ¡ mis

¸
¡ 1

and let T [d0] 5 maxfS( p, q) : D (p, q) µ d 0g. Then the following conditions are equivalent.

C1: S (i, j) ¶ T [d 0] ¡ X .

C2: S (i, j) ¶ S (p, q) ¡ X for all ( p, q) such that p 1 q , i 1 j .

Here, ( p, q) can be a “half-point,” as used in Figure 2.

Proof. Our greedy algorithm treats only integer values of d. However, let us de� ne D (i 1 1
2 , j 1 1

2 ) to
be (D (i, j) 1 D (i 1 1, j 1 1))=2, for all integers i , M and j , N . Note that T [d 0] is unchanged since
d 0 is an integer. It is straightforward to verify that the formula for S in terms of D holds for half-points,
i.e., S (i 1 1

2 , j 1 1
2 ) = (i 1 j 1 1)mat=2 ¡ D (i 1 1

2 , j 1 1
2 )(mat ¡ mis).

First we show that C1 implies C2 by assuming that C2 is false and proving that C1 is then false.
Suppose S( p, q) . S (i, j) 1 X for some (p, q) satisfying p 1 q , i 1 j . Then

D ( p, q) 5 [(p 1 q)mat=2 ¡ S ( p, q)]=(mat ¡ mis)

, [(p 1 q)mat=2 ¡ S (i, j ) ¡ X ]=(mat ¡ mis)

µ [(i 1 j )mat=2 ¡ S(i, j) ¡ X ¡ mat=2]=(mat ¡ mis)

5 D (i, j) ¡ (X 1 mat=2)=(mat ¡ mis).

Without loss of generality, D (p, q) is an integer, since otherwise ( p, q) is a half-point on a mismatch
edge, and S (p ¡ 1

2 , q ¡ 1
2 ) . S ( p, q). Let V denote (X 1 mat=2)=(mat ¡ mis). Then D (i, j) ¡ D ( p, q)

is the � rst integer strictly larger than V (i.e., bV c 1 1 or more). Hence D ( p, q) µ d0. It follows that
S (i, j) 1 X , S (p, q) µ T [d 0].

For the converse, we assume that C1 is false and prove that C2 is then false. Suppose that S (i, j ) ,
T [d 0] ¡ X . By de� nition, T [d 0] equals some S( p, q) where D ( p, q) µ d 0. If p 1 q , i 1 j , then we’ve
found a witness that C2 is false. But what if (p, q)’s antidiagonal is not smaller than (i, j)’s? Then pick an
alignment ending at (p, q) and having at most d 0 differences. Consider the initial portion of that alignment
ending on antidiagonal i 1 j ¡ 1, say at ( p0, q0). (This is where half-points may be necessary; without
half–points, the antidiagonal index would increase by 2 along match and mismatch edges.) That pre� x has
at most d 0 differences, and hence

S (p0, q 0) ¡ S(i, j) 5 (p0 1 q0)mat=2 ¡ d 0(mat ¡ mis)

¡ (i 1 j )mat=2 1 d(mat ¡ mis)

5 ¡ mat=2 1 (d ¡ d 0)(mat ¡ mis)

. X .
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In summary, comparing S (i, j ) with T [d0] ¡ X immediately tells us if S (i, j) should be pruned. Note
that this test need only be performed when we � rst � nd a point (i, j) on diagonal k and where D (i, j) 5 d ,
since if that point survives, then subsequent points on that diagonal with D -value d have their S -value
increasing as fast as possible and hence won’t be pruned. To be precise, suppose S (i, j) ¶ S (p, q) ¡ X for
all (p, q) satisfying p 1 q , i 1 j , and let D (i 1 t , j 1 t) 5 D (i, j) for some t . 0. Then S (i 1 t , j 1 t)
= S(i, j) 1 t £ mat ¶ S( p, q) ¡ X 1 t £ mat ¶ S (p 1 t , q 1 t) ¡ X for all ( p 1 t , q 1 t) such that
p 1 q 1 2t , i 1 j 1 2t .

Theorem 1. Assume an alignment-scoring scheme in which ind 5 mis ¡ mat=2, where mat . 0,
mis , 0 and ind , 0 are the scores for a match, mismatch and insertion/deletion, respectively. The
algorithm of Figure 4, with S 0 as de� ned in Lemma 1, always computes the same optimal alignment score
as does the algorithm of Figure 2.

Proof. First note that the previous discussion, including Lemma 2, implies the equivalence of the
algorithms if no pruning is performed (lines 13–16 of Figure 2 and lines 19–22 of Figure 4). But pruning
does not affect the computed result. In particular, consider lines 21–22 of Figure 4, which handle situations
when the grid boundary is reached. If extension down diagonal k reaches i 5 M , then there is no need
to consider diagonals larger than i , since positions searched at a later phase (larger d) will have smaller
antidiagonal index, and hence smaller score. Thus we set U ¬ k ¡ 2, so that when diagonals with
index at most U 1 1 are considered in the next phase, unnecessary work will be avoided. L is handled
similarly.

Let dmax and L µ M 1 N denote the largest values of d and of i 1 j attained when the algorithm of
Figure 4 is executed. Then the algorithm’s worst-case running time is O (dmax L ). The distinction between
this algorithm and earlier greedy alignment methods is that another worst-case bound for the current method
is O (

P
dµdmax

Ud ¡ L d ), where L d and Ud denote the lower and upper bounds of fk : R (d , k) . ¡ 1g.

1. i ¬ 0
2. while i , minfM , N g and ai 1 1 5 bi 1 1 do i ¬ i 1 1
3. R (0, 0) ¬ i
4. T 0 ¬ T [0] ¬ S 0(i 1 i, 0)
5. d ¬ L ¬ U ¬ 0
6. repeat
7. d ¬ d 1 1

8. d 0 ¬ d ¡
j

X 1 mat=2
mat ¡ mis

k
¡ 1

9. for k ¬ L ¡ 1 to U 1 1 do

10. i ¬ max

8
<

:

R (d ¡ 1, k ¡ 1) 1 1 if L , k
R (d ¡ 1, k) 1 1 if L µ k µ U
R (d ¡ 1, k 1 1) if k , U

11. j ¬ i ¡ k
12. if i . ¡ 1 and S 0(i 1 j, d) ¶ T [d 0] ¡ X then
13. while i , M , j , N and ai 1 1 5 b j 1 1 do
14. i ¬ i 1 1; j ¬ j 1 1
15. R (d , k) ¬ i
16. T 0 ¬ maxfT 0, S 0(i 1 j, d)}
17. else R (d, k) ¬ ¡ 1
18. T [d] ¬ T 0

19. L ¬ minfk : R (d , k) . ¡ 1g
20. U ¬ maxfk : R (d , k) . ¡ 1g
21. L ¬ maxfL , maxfk : R (d, k) 5 N 1 kg 1 2g
22. U ¬ minfU, minfk : R (d, k) 5 M g ¡ 2g
23. until L . U 1 2
24. report T 0

FIG. 4. Greedy algorithm that is equivalent to the algorithm of Figure 2 if ind 5 mis ¡ mat=2.
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procedure script(d , k)
if d . 0 then

i ¬ maxfR (d ¡ 1, k ¡ 1) 1 1, R (d ¡ 1, k) 1 1, R (d ¡ 1, k 1 1)g
if i 5 R (d ¡ 1, k ¡ 1) 1 1 then

script(d ¡ 1, k ¡ 1)
print "delete ai"

else if i 5 R (d ¡ 1, k) 1 1 then
script(d ¡ 1, k)
print "replace ai by bi ¡ k"

else
script(d ¡ 1, k 1 1)
print "insert bi ¡ k"

FIG. 5. An algorithm to determine an optimal edit script.

A more subtle analysis would show that under certain probabilistic assumptions, the expected running time
is O (d2

max 1 L ) (Myers, 1986).

3.1. Determining the alignment

For some applications, a score-only alignment algorithm is adequate. That is, only the optimal score
or number of differences needs to be reported, as in Figures 2 and 4. On the other hand, if certain
intermediate values in Figure 4 are retained, then one can construct a minimum-sized set of replacement
and indel operations that converts sequence A to B . Such a set is called an optimal edit script, and
can readily be translated to a maximum-score alignment if the scoring scheme satis� es the condition of
Lemma 1.

One approach to determining an optimal edit script is as follows. For each d ¶ 0, again let L d and Ud

denote the lower and upper bounds of fk : R (d , k) . ¡ 1g. We store all R (d , k) for L d ¡ 2 µ k µ Ud 1 2;
keeping a couple of ¡ 1 values on either end lets us avoid storing the L and U and dealing with them
in the “trace-back” step. We also need to retain dbest and kbest , the values of variables d and k when the
maximum value of T 0 is � rst assigned (line 16). Then execution of script(dbest , kbest ) produces the desired
result, where script is as in Figure 5.

Note that this approach requires O (dmax C) space, where dmax is the value of d during the last iteration
of the main loop in Figure 2, and C is the average value of Ud ¡ L d for 0 µ d µ dmax . It is straightforward
to see that C , dmax . In cases where this space requirement causes problems, use of a more sophisticated
algorithm (Myers, 1986) can reduce the worst-case space to O (M 1 N ), where M and N are the sequence
lengths. In any case, the worst-case time required to execute script(dbest , kbest ) is O (M 1 N ).

4. AN EXAMPLE

Implementations of the greedy algorithm have been incorporated into several alignment tools that are
under development for use at the National Center for Biotechnology Information. Those tools and their in-
tended uses will be described in a later publication. Here we mention a brief experiment that we performed,
using a Blast-family tool that permits optional use of the greedy algorithm.

We used that program to align the genomic sequence of Mycobacterium tuberculosis, strain H37Rv
(Cole et al., 1998), with the sequence being generated at The Institute for Genomic Research from another
M. tuberculosis strain that is 99% identical. A need to compare these sequences motivated others (Delcher
et al., 1999) to develop an alignment program capable of handling complete bacterial genomes. The H37Rv
sequence is 4,441,529 nucleotides, while the other sequence is roughly the same length, though at the time
we obtained the sequence (March 3, 1999), it consisted of 42 contigs. For one test we extracted the largest
of those contigs (namely the reverse complement of contig 3732, which was 466,170 nucleotides). Part
of the contig aligns with the start of the H37Rv, and part with the end (the genomes are circular, so the
starting point for the sequence record is largely arbitrary).

In typical Blast fashion (Altschul et al., 1990), the program begins by making a table of all 12-mers in
the H37Rv sequence; this took about 15 seconds on our Sun Ultra-30 workstation (296 MHz). Then the
TIGR contig was scanned, and matching 12-mers were inspected to see if they were included in a 30-bp
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exact match; this took an additional 45 seconds. Finally, an X-drop algorithm was applied to knit the 30-bp
matches together into long gapped alignments. With both approaches (dynamic programming and greedy),
this is done by recursively picking a longest exact match that does not intersect one of the earlier gapped
alignments (initially the empty set) and extending in both directions until the X-drop condition terminates
the extension.

With small values of X, say 2 £ ind, the greedy algorithm ran in about a second, while the dynamic-
programming algorithm took 15 seconds. The ratio, i.e., with the greedy algorithm 15 times faster than
the dynamic programming algorithm, is typical in our experience; a thorough comparative analysis will
appear later. When the same program was applied to align all 42 contigs (in both directions), it took 15
minutes to complete the task.

5. GENERALIZATIONS

For this development we have assumed that it is appropriate to penalize an indel about the same as,
or slightly more than, a replacement. This seems consistent with published � gures on the rates of actual
errors in both single-pass (low accuracy) sequences (Ewing et al., 1998; Hillier et al., 1996) and high
quality data.

On the other hand, it is widely appreciated that dynamic-programming alignment algorithms can guar-
antee a theoretically optimal alignment under a wide variety of scoring schemes. For instance, af� ne gap
penalties (a gap of length k is penalized a 1 bk for � xed a and b) are required to accurately model
sequence differences arising from evolution, and symbol-dependent replacement scores are needed for
accurate protein alignments. More generally, position-dependent substitution and indel scores are possible
and are frequently used in bioinformatics. All of these generalizations can be handled by appropriate mod-
i� cations to Figure 2. Further generalizations are possible (e.g., to more general gap penalties (Miller and
Myers, 1988)), but have yet to prove useful in practice.

Our discussion of the greedy algorithm has considered three operations, viz., substitution, insertion and
deletion of single nucleotides. Each operation was in essence assigned cost 1 when we chose to minimize
the number of differences. Additional kinds of operations and/or more general costs can be contemplated,
with the goal of developing an algorithm that � nds a set of operations converting one given sequence to
another at minimum total cost. When all costs are small nonnegative integers, it may be possible to develop
a greedy-style algorithm that, at least in theory, is ef� cient if the two sequences are very similar. Myers and
Miller (1989b) give results of this sort covering af� ne gap costs, as well as certain additional operations
that appear inappropriate for bioinformatics applications. Symbol-dependent mismatch costs can also be
handled, though we know of no published description, perhaps because the practical ef� ciency of greedy
alignment algorithms degrades very quickly as generality is increased.

Here we brie� y explore generalizations of the above results to wider classes of operations and costs. That
is, assuming that the dynamic programming algorithm of Figure 2 is modi� ed for a more general alignment-
scoring scheme, when can an equivalent greedy algorithm be developed? In particular, what about more
general scores for mismatches and gaps? We factor this into two extensions of our basic result and leave it
to the industrious reader to combine those extensions. We close by mentioning alignment-scoring schemes
that appear to defy the methods presented in this paper.

5.1. Arbitrary match, mismatch and indel scores

The dynamic-programming algorithm of Figure 2 works for arbitrary mat . 0, mis , 0 and ind , 0,
whereas Figure 4 is equivalent to Figure 2 only if ind 5 mis ¡ mat=2. However, with a more complex greedy
algorithm, this constraint can be avoided. Moreover, the greedy method can handle cases where mismatches
fall into classes that are scored differently (with DNA sequences this might be used to distinguish transitions
A $ G and C $ T from transversions) and where insertions and deletions are treated separately (for
instance when aligning a genomic sequence and a spliced gene sequence).

Suppose that a mismatch is either of type MIS1 or type MIS2 and that alignments are scored using integer
constants mat . 0, mis1 , 0, mis2 , 0, ins , 0 and del , 0 for the � ve kinds of columns. Without loss
of generality, mat is even, since all � ve values can be doubled without materially affecting the problem.
De� ne g 5 gcd(mat ¡ mis1, mat ¡ mis2, mat=2 ¡ ins, mat=2 ¡ del), and de� ne mis10 5 (mat ¡ mis1)=g,
mis20 5 (mat ¡ mis2)=g, ins0 5 (mat=2 ¡ ins)=g and del0 5 (mat=2 ¡ del)=g. We de� ne the weighted
difference cost of an alignment with M 1 mismatches of type MIS1, M 2 mismatches of type MIS2, and
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I insertions and D deletions to be M 1 £ mis10 1 M 2 £ mis20 1 I £ ins0 1 D £ del0. Mirroring Lemma 1,
it is straightforward to show that any alignment of a1a2 . . . ai and b1b2 . . . b j of weighted difference cost
d has score S 00(i 1 j, d) 5 (i 1 j) £ mat=2 ¡ d £ g. Moreover, Lemma 2 carries over with d 0 replaced by
d 00 5 d ¡ b(X 1 mat=2)=gc ¡ 1.

The next ingredient is a greedy algorithm for aligning under the weighted difference cost. Let W (i, j )
denote the minimum weighted distance cost of any alignment of ai a2 . . . ai and b1b2 . . . b j . Theorem 2 is
essentially the induction step for a correctness proof of the appropriate greedy alignment algorithm.

Theorem 2. Fix d . 0 and k. Suppose for c , d and for t 2 fk ¡ 1, k, k 1 1g that Q (c, t) 5 maxfi :
W (i, i ¡ t ) µ cg, i.e., the x -coordinate of the last position on diagonal t having W -value at most c;
we let Q (c, t ) 5 ¡ 1 if W (i, i ¡ t) . c for all relevant i . Assume that Q (d ¡ del0, k ¡ 1) , M and
Q (d ¡ ins0, k 1 1) µ N 1 k. Let i be computed as follows.

i ¬ max

8
>><

>>:

Q (d ¡ del0, k ¡ 1) 1 1
Q (d ¡ mis10, k) 1 1 if (ap , bp ¡ k ) 2 MIS1 for p 5 Q (d ¡ mis10, k) 1 1
Q (d ¡ mis20, k) 1 1 if (ap , bp ¡ k ) 2 MIS2 for p 5 Q (d ¡ mis20, k) 1 1
Q (d ¡ ins0, k 1 1)

if Q (d ¡ 1, k) , i µ minfM , N 1 kg then
while i , minfM , N 1 kg and ai 1 1 5 bi 1 1 ¡ k do

i ¬ i 1 1
else

i ¬ Q (d ¡ 1, k)

The resulting value of i is maxfi : W (i, i ¡ k) µ dg.

Proof. We � rst show that W (i, i ¡ k) µ d . The contributions to the four-way maximization give the
x -coordinate of the points reached by (1) adding a deletion column to an alignment of cost at most d ¡ del0

ending on diagonal k ¡ 1, (2) adding a mismatch column of type MIS1 to an alignment of cost at most
d ¡ mis10 ending on diagonal k (3) adding a mismatch column of type MIS2 to an alignment of cost at
most d ¡ mis20 ending on diagonal k and (4) adding an insertion column to an alignment of cost at most
d ¡ ins0 ending on diagonal k 1 1. Thus the value i assigned by the max operation satis� es W (i, i ¡ k) µ d .
Progressing along the diagonal with the while-loop corresponds to adding match columns to the end of
the alignment, so the � nal value of i satis� es W (i, i ¡ k) µ d .

What remains is to show that any point ( p, p ¡ k) on diagonal k where W ( p, p ¡ k) µ d must satisfy
p µ i . Pick an alignment of weighted cost at most d ending at (p, p ¡ k). Remove any match columns
from the right end, until a mismatch or indel column is reached. First suppose that column is an insertion.
Removing that column produces an alignment of cost at most d ¡ ins0 ending on diagonal k 1 1, so the
x -coordinate of the point reached is at most Q (d ¡ ins0, k 1 1), which cannot exceed the value assigned
to i by the four-way max operation. It follows readily that p µ i .

Another case is when the last nonmatching column is a mismatch of type MIS1. Removing that column
gives an alignment of cost at most d ¡ mis10 ending at, say, (x , x ¡ k). Let y 5 Q (d ¡ mis10, k), whence
x µ y . If x 5 y , then x is at most the value of the four-way max. Otherwise, p µ y µ Q (d ¡ 1, k), since
ay 1 1 65 by ¡ k 1 1. Thus, p cannot exceed the � nal value of i , which is at least Q (d ¡ 1, k).

The other cases, namely a deletion column and the other kind of mismatch, are handled similarly.

The reader who has worked carefully through the development of the greedy algorithm for number-of-
differences alignment should be able to � ll in the details of a greedy algorithm for X-drop alignment using
this more general alignment scoring scheme. The recurrence of Theorem 2 can be evaluated in time that
is independent of the number of kinds of mismatches; veri� cation of this observation is left to the reader.

5.2. Af�ne gap penalties

Suppose that an alignment with J matches, K mismatches, and G gaps of total length I is given score
J £ mat 1 K £ mis 1 I £ ind 1 Ga; a , 0 is frequently called the “gap-open penalty.” A highest-scoring
alignment of sequences A and B can be computed in time proportional to the product of the sequence
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lengths (Gotoh, 1982) by a dynamic programming algorithm that is equivalent to � nding an optimal path
in a graph that has three vertices per grid-point (i, j) (Myers and Miller, 1989a).

Let mat, mis, ind and a be integers, with mat even. De� ne g 5 gcd(mat ¡ mis, mat=2 ¡ ind, ¡ a),
mis0 5 (mat ¡ mis)=g , ind0 5 (mat=2 ¡ ind)=g and a0 5 ¡ a=g. The cost assigned to an alignment with K
mismatches and G gaps of total length I is d 5 K £ mis0 1 I £ ind 0 1 G £ a0. Again, the alignment’s score
equals S 00(i 1 j, d) 5 (i 1 j ) £ mat=2 ¡ d £ g, and setting d 00 5 d ¡ b(X 1 mat=2)=gc ¡ 1 gives the result
analogous to Lemma 2. These observations, coupled with a greedy alignment algorithm for af� ne gap
costs (Myers and Miller, 1989b), give a greedy algorithm equivalent to a dynamic-programming X-drop
algorithm with af� ne gap penalties.

5.3. Symbol-dependent match scores

Symbol-dependent match scores are needed for accurate alignment of protein sequences, and the dynamic
programming algorithm can deal with them easily. However, they present dif� culties for the approach
discussed in this paper, as we now sketch.

Consider an alignment of a1a2 . . . ai and b1b2 . . . b j . Let s(a, b) denote the score awarded whenever a
is aligned with b (a can be identical to b or distinct) and let ind be the indel score. Also, let MAT and
MIS denote the set of matching and mismatching aligned pairs. Then the alignment’s score is:

S (i, j) 5
X

(a,b)2M AT

s(a, b) 1
X

(a,b)2M I S

s(a, b) 1 I ind.

Give each mismatch (a, b) the cost s0(a, b) 5 (s(a, a) 1 s(b, b))=2 ¡ s(a, b), give an indel of c (where
c 5 ap or c 5 bq ) the cost s0(c) 5 s(c, c)=2 ¡ ind, and de� ne the alignment’s cost as:

D (i, j ) 5
X

(a,b)2M I S

s0(a, b) 1
X

( ¡ ,c),(c, ¡ )2I N DE L

s 0(c).

Then S (i, j) 5 (
Pi

p5 1 s(ap , ap ) 1
P j

p5 1 s(bp , bp ))=2 ¡ D (i, j ). This observation reduces the score-
maximizing problem to a cost-minimizing problem, which can be solved by dynamic programming.

At that point, the analogy with the above development for other scoring schemes breaks down. The
formula for S (i, j ) in terms of D (i, j) is not constant along each antidiagonal, spelling trouble for any
attempt to generalize Lemma 2. More important, the existence of symbol-dependent indel costs seems at
odds with development of a greedy strategy, since the loop

while i , M and j , N and ai 1 1 5 b j 1 1 do

i ¬ i 1 1; j ¬ j 1 1

ignores the possibility of deleting or inserting a matched character under the assumption that a later
deletion or insertion will work as well. We leave development of an ef� cient alignment algorithm for
symbol-dependent match scores as an open problem.
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