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Steady-state levels of mRNA in cells theoretically depend on the rate and efficiency of transcription and

posttranscriptional processing, on mRNA stability, on transcriptional interference from other genes, and on poorly

defined long-range chromatin effects. Although each of these cellular processes has been studied in detail for a few

genes, it is not possible to predict expression levels by simply examining gene sequences. In this report, we have used

a bioinformatics approach to identify critical factors that influence expression levels. To simplify the problem, we

have limited our analysis to the collection of genes expressed in all tissues, because such genes provide a unique

opportunity to distinguish the role of general genomic features that constrain gene expression from the effect of

tissue-specific factors. Using correlation and regression techniques, we have investigated the dependence between

expression level and morphological parameters (distance to neighbors, gene, mRNA or 3�-UTR length, number of

exons, etc.) that can be directly related to transcription, posttranscriptional processing, mRNA stability, or

transcriptional interference. We found that, on a genome-wide scale, highly expressed genes are significantly farther

from their closest neighboring genes, are smaller, contain a moderate number of exons, and produce shorter mRNAs

with shorter 3�-UTRs. This confirms that transcriptional and posttranscriptional processes are highly interrelated and

implies that transcriptional interference plays a role in determining steady-state levels of mRNA in cells.

[Supplemental material is available online at www.genome.org. The data sets and details on data preparation and

preprocessing can be found at http://bio.cse.psu.edu/dist/bouhassira/. The complete list of genes used in this study

is available at http://bio.cse.psu.edu/.]

The steady-state levels of mRNA in cells depend on the rate of

transcriptional initiation and elongation, on the efficiency of

splicing and termination of transcription, on the rate of export to

the cytoplasm, and on the stability of the mRNA in the cyto-

plasm. Transcriptional interference, broadly defined as the per-

turbation of one transcription unit by another, is also believed to

affect expression levels. Several mechanisms including steric or

topological constraints induced by transcription, competition for

cis-acting sequence, production of antisense RNA, and epigenetic

phenomena linked to DNAmethylation or histonemodifications

have been implicated in transcriptional interference. In addition,

some genes might require large regulatory sequences for their

regulation, precluding the presence of other genes nearby.

Although some of these mechanisms and cellular processes

have been studied in great detail for a few genes, it is generally

not possible to predict expression levels by simply examining

gene sequences. In this report, we have used a bioinformatics

approach to try and identify critical factors that influence expres-

sion levels, using sequence and expression data available on the

internet.

One major difficulty in relating sequence and expression

information is the large number of tissue-specific effectors (e.g.,

transcription and splicing factors) that, through extremely com-

plex pathways, determine the differential regulation of gene ex-

pression during development and differentiation. To simplify the

problem, we have limited our study to the minimal human

housekeeping transcriptome (MHKT), a collection of genes ex-

pressed in all tissues. The MHKT provides a unique opportunity

to distinguish the role of general genomic features that constrain

gene expression from the effect of tissue-specific factors, because

the peculiarities of each individual tissue should average out.

Our approach uses correlation and regression techniques to

investigate, on a genome-wide scale, the dependence between

expression level and morphological parameters such as distance

to closest neighboring gene, gene, mRNA and 3�-UTR length, and

number of exons. We then attempt to relate these morphological

parameters to one or more cellular processes using simple hy-

potheses such as: (1) If elongation rates limit expression levels,

longer genes should be expressed at lower levels than shorter

genes. (2) If splicing efficiency limits expression level, genes with

few exons should be expressed at higher levels than genes with

many exons. (3) If transcriptional interference limits expression

levels, genes far from their neighbors should be expressed at

higher levels than genes close to their neighbors.

The influences of the rate of transcriptional initiation and of

mRNA stability on expression are harder to capture by measuring

simple morphological parameters. Stability and turnover of

mRNA is a complex, highly regulated process that occurs either

by progressive degradation from the 3�-end or following endo-

nuclease activities (Vreken et al. 1991; Mitchell and Tollervey

2000; Moore 2002). Both pathways often involve cis-acting ele-

ments located in the 3�-UTR (Pesole et al. 2001; Mignone et al.

2002). We therefore attempted to evaluate the influence of

mRNA stability by investigating the relationship between expres-

sion levels and 3�-UTR length. Because long mRNA might pro-

vide more target sites for degradation, we also considered mRNA

length. We did not attempt to assess the role of the rate of tran-

scriptional initiation.

Our analyses revealed that, on a genome-wide scale, highly

expressed genes are smaller and produce shorter mRNAs with
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shorter 3�-UTRs. Interestingly, we also found that highly ex-

pressed genes are significantly farther from their closest neigh-

bors. These findings confirm the importance of transcriptional

and posttranscriptional processing in determining expression

levels and, importantly, provide evidence for a role of transcrip-

tional interference in determining steady-state levels of mRNA in

cells.

RESULTS
We obtained expression information from the database created

by Velculescu et al. (1999). Using serial analysis of gene expres-

sion (SAGE), a method that provides absolute quantitation of

steady-state mRNA levels per cell, these investigators analyzed

3.5 million transcripts representing 19 different tissues or cell

lines, and reported that whereas >50% of all human genes were

widely expressed, only ∼1000 genes were expressed in every tis-

sue they examined. The latter group of genes, whose expression

ranges from >1000 to <10 copies of mRNA per cell, can therefore

be defined as the MHKT.

Through data preparation steps, we completely updated the

list of genes in the MHKT using the most recent data from the

human genome project, isolated a subset of 393 genes for which

high-quality DNA sequence and RNA expression data were avail-

able, and extracted structural parameters such as gene length,

number of exons, 3�-UTR length, and distance to the nearest

neighbors on both sides. The complete list of genes used in this

study is available online (Supplemental file 1, available at www.

genome.org or at http://bio.cse.psu.edu/). The average and range

of expression of these 393 genes in the 19 tissues is plotted in

Figure 1.

Inspection of the 393 “high-quality” MHKT genes revealed

an association between gene length and level of mRNA expres-

sion: virtually all genes expressed at >200 copies of mRNA per cell

are shorter than 10,000 bp, whereas most of the genes longer

than 10,000 bp are expressed at low levels (Fig. 2). This strong

influence of gene length on mRNA expression was verified and

quantified on the whole data set by a detailed statistical analysis.

On the natural log scale, we found a strong negative association

between the number of copies of mRNA per cell and gene length.

The correlation coefficient is�0.299, with a p-value equal to 0 to

the third decimal approximation. Examination of the “lowess

smooth,” a curve that captures the shape of the relationship be-

tween two variables (see Methods), revealed that the strongest

effect of gene length occurs for genes between 4000 and 15,000

bp in length (red curve in Fig. 2, inset). To assess the significance

of the observed pattern, lowess smooths were computed on ran-

dom permutations of the data (black curves in Fig. 2, inset),

showing that the observed dependence was unlikely to be caused

by chance alone.

Figure 1 Range of expression of the genes of the MHKT. Average (red
curve) and min-to-max range (white bars) of expression for the 393
genes of the MHKT in 19 tissues (from Velculescu et al. 1999).

Figure 2 Dependence of expression on gene length. Expression (mRNA/cell) of 393 genes in the MHKT plotted against gene length. (Inset) Natural
log scatter plot of the same data. The logarithmic transformation regularizes the data and helps in visualizing dependence patterns. Axes on top and
on the right provide readings before logarithmic transformation of the numbers. The red curve represents a lowess smooth of the data, and the black
curves lowess smooths from random permutations. Both plots reveal a strong negative association between expression and gene length. (corr)
Correlation coefficient. p-values are in parentheses.
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A simple explanation for the negative association between

expression and gene length is that the rate of transcriptional

elongation constitutes a limiting step. However, this negative

associationmay also reflect other effects, such as those of splicing

and mRNA stability. To investigate these effects, and whether or

not they account for substantial portions of the effect of gene

length, we considered the number of exons

as a splicing-related parameter, and mRNA

and 3�-UTR length as stability-related pa-

rameters (assuming that long mRNAs are

more susceptible to degradation because

they offer more target sites for nucleases,

and that unstable mRNAs are characterized

by long 3�-UTRs). All three of these param-

eters have strong positive correlations with

gene length and with one another (table at

the bottom of Fig. 3).

We found a negative association be-

tween expression and number of exons. On

the natural log scale, the correlation coeffi-

cient is �0.164 (p-value 0.001). However,

the lowess smooth shows some curvature at

low exon numbers (red curve in Fig. 3A, left

panel), indicating a complex effect. For

genes with less than four exons, the asso-

ciation is actually slightly positive: a mini-

mal number of exons might be required for

high expression levels, maybe reflecting the

integration of mRNA processing and tran-

scription (Fong and Zhou 2001). Once

again, the observed pattern is significant in

comparison to lowess smooths from ran-

dom permutations (black curves in Fig. 3A,

left panel).

As for stability, we found that highly

expressed genes tend to have shorter mR-

NAs and shorter 3�-UTRs. In both cases, the

negative association is strong. On the natu-

ral log scale, the correlation coefficients are

�0.289 and �0.252, respectively (p-values

0.000). The lowess smooths are down-

sloping (red curves in Fig. 3B,C, left panels)

and represent significant patterns in com-

parison to lowess smooths from random

permutations (black curves in Fig. 3B,C, left

panels), particularly for shorter genes.

The right panels of Figure 3, A,B,C,

contain the added variable plots (see Meth-

ods) for expression on gene length after cor-

rection for exon number, mRNA length,

and 3�-UTR length, respectively. In all cases,

the correlation coefficients, and the lowess

smooths (red curves) in comparison to low-

ess smooths from random permutations

(black curves), establish a weakened but still

significant negative association with respect

to the original plot (Fig. 2, inset). Thus,

splicing and mRNA stability do appear to

account for a substantial portion of the

negative association between expression

levels and gene length, but they also leave a

substantial residual effect—which may be

linked to transcriptional elongation.

It must also be noted that, although we

can observe individually the effects of exon

number, mRNA, and 3�-UTR length, as well

as their contributions to the effect of gene length, these indi-

vidual effects and contributions are statistically confounded (i.e.,

hard to separate) on our data because of correlations existing

between our splicing and stability-related parameters themselves.

For instance, on the natural log scale, the correlation between

exon number and mRNA length is 0.692 (p-value 0.000), and the

Figure 3 (Legend on facing page)
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added variable plot for expression on exon number after correct-

ing for mRNA length (Fig. 3D) shows almost no dependence (cor-

relation 0.043; red lowess smooth within the range of black low-

ess smooths from random permutations). In other words, statis-

tically speaking, mRNA length can account for almost all the

effect of exon number because of the correlation between the two

variables.

In an attempt to detect on a genome-wide scale transcrip-

tional interference defined as in the introduction, we computed

the distance between the cap sites and the poly(A) sites of each of

the 393 genes and their nearest neighbors on both sides. We then

tested various means of combining this distance information to

partition the MHKT genes into an “urban” class (likely to be

subject to interference) and a “rural” class. Remarkably, analysis

of these two classes always produced similar conclusions: Genes

in close proximity to other genes tend to have expression levels

that are lower on average than more isolated genes. Copies of

mRNA per cell versus distance to the closest neighbor (the latter

on the natural log scale) are plotted in Figure 4A—for genes that

overlap with their closest neighbor, the distance is negative, and

the log of the size of the overlap is reported on the negative

X-axis.

Strikingly, all genes expressed at more than 500 copies of

mRNA per cell are far from their neighbors, whereas all but two

genes with a neighbor closer than 100 bp are expressed at less

than 100 copies of mRNA per cell.

We adopted a simple definition of urban genes as the 25% of

the MHKT genes with the shortest distance to their closest neigh-

bor, regardless of orientation. Rural genes are defined as the re-

maining 75%. The tables in Figure 4 report mean and median

distances to closest neighbors, as well as mean mRNA/cell and

mean ln(mRNA/cell), with their standard errors, for genes in the

two classes. The mean expression level for the urban class is al-

most twofold lower than for the rural class (62.2 � 7.58 and

110.8 � 10.1 mRNA/cell, respectively). Also, cumulative distri-

bution plots of expression levels by class reveal that the urban

class is depleted in highly expressed genes with respect to the

rural class (green and blue curves in Fig. 4B).

Using the log scale on both axes, a scatter plot of expression

versus distance to closest neighbor reveals a significant positive

association: the correlation is 0.123 (p-value 0.015), and the low-

ess smooth is un-chance-like in comparison to lowess smooths

from random permutations (red and black curves in Fig. 4C).

Moreover, this positive association is not a spurious consequence

of urban genes being longer than rural ones. As a matter of fact,

distance to closest neighbor and gene length present a mild posi-

tive correlation of 0.10 (p-value 0.061), and the added variable

plot for expression on distance after correcting for gene length

(Fig. 4D) reveals a stronger positive relationship (the correlation

increases to 0.163, with a p-value of 0.001, and the upward pat-

tern in the lowess smooth is more marked).

We then examined the relationship between copies of

mRNA per cell and exon number, gene length, mRNA length,

and 3�-UTR length separately for the urban and rural classes (Fig.

5A,B,C,D). The lowess smooths show how the association be-

tween mRNA expression and gene length, mRNA length, 3�-UTR

length, and exon number is substantially weakened in the urban

but not in the rural class. In other words, transcriptional inter-

ference not only depresses expression, but also the degree to

which expression is influenced by these parameters. This is evi-

dence that transcriptional interference may dominate the effects

of transcriptional elongation, mRNA stability (posttranscrip-

tional events), and splicing proxied by these parameters, and

thus occur primarily at the level of transcriptional initiation.

DISCUSSION
The most novel and striking result from our analyses is the nega-

tive association between mRNA expression and distance to the

closest neighboring gene, because it indicates that transcriptional

interference plays a role in determining the level of gene expres-

sion. Importantly, given that we did not take into consideration

tissue-specificity and expression levels of neighboring genes, the

actual effect of transcriptional interference is likely to be even

stronger than what we could detect in this study.

Transcriptional interference has long been shown to affect

expression of genes in tandem orientation in model systems

(Proudfoot 1986). We recently extended these findings and

showed that transcriptional interference has a strong negative

effect on expression irrespective of the relative orientation of the

transcription units (Eszterhas et al. 2002). These cell culture re-

sults are also supported by numerous reports that in vivo, select-

able markers inserted in the genome by homologous recombina-

tion in ES cells have dramatic effects on gene expression (Fiering

et al. 1999). At the molecular level, the mechanisms of transcrip-

tional interference are not well understood but are likely to be

complex. Steric hindrance, promoter occlusion, and RNAi are all

likely contributors (Eszterhas et al. 2002).

Regardless of the mechanism, the finding that proximity of

neighboring transcriptional units strongly influences mRNA ex-

pression levels in mammalian cells has implications for several

cellular and evolutionary processes. For instance, mutagenesis

induced by integration of man-made or naturally occurring mo-

bile genetic elements, which is generally believed to be caused by

disruption of coding or regulatory sequences (Whitelaw et al.

2001), might be greatly augmented by transcriptional interfer-

ence. Reactivation of normally silenced repetitive sequence in

cancer cells could depress expression of neighboring genes, and

conversely, gene silencing associated with aging (Issa 2000) could

activate neighboring genes. Transcriptional interference might

also partially explain the recent finding that in Saccharomyces

cerevisiae, adjacent pairs of genes tend to be coregulated (Cohen

et al. 2000).

The associations between expression levels and gene,

mRNA, and 3�-UTR lengths, as well as exon number, are more

complicated to interpret, because mRNA processing is highly in-

tegrated (Proudfoot et al. 2002). Capping, splicing, and polyade-

nylation occur cotranscriptionally, and are all tightly linked to

transcription via the interaction of various factors with the C-

terminal domain of RNA polymerase II. Most of the mRNA pro-

Figure 3 Relationship between expression and morphological parameters. (A–C, left panels) Scatter plots of ln(mRNA/cell) versus ln(exon number),
ln(mRNA length), and ln(3�-UTR length), respectively. The red curves represent lowess smooths, and the black curves lowess smooths from random
permutations. mRNA expression has strong negative associations with all these parameters. (A–C, right panels) Added variable plots for ln(mRNA/cell)
versus ln(gene length) after correcting for ln(exon number), ln(mRNA length), and ln(3�-UTR length), respectively. Red and black curves are again lowess
smooths on original data and random permutations; (res) residual. All three of these parameters account for a substantial portion of the negative
association between expression and gene length, but leave a substantial remainder effect, lending support to a role of transcriptional elongation. The
table at the bottom of the figure contains correlations between parameters. Because of the very high positive correlation between exon number and
mRNA length, the effects of splicing and mRNA stability and their contributions to the effect of gene length, although individually observable, are
confounded. This is shown by panel D, which contains the added variable plots for ln(mRNA/cell) versus ln(exon number), after correcting for ln(mRNA
length). (corr) Correlation coefficient. p-values are in parentheses.
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Figure 4 Effects of distance to neighbors. Genes are divided into urban (green) and rural (blue) classes on the basis of their distance to the closest gene
neighbor on either side (urban genes are the 25% with shortest distance). (A) A scatter plot of mRNA/cell versus distance to closest neighbor (min dist).
Note that negative values correspond to sizes of overlap for genes that overlap their neighbors, and that the scale on the X-axis is logarithmic. (B)
Cumulative distribution functions of ln(mRNA/cell) by class, which show depletion of highly expressed genes in the urban class. (C) A scatter plot of
ln(mRNA/cell) versus sign(min_dist) ln(| min_dist |). This represents the log transformation for min_dist, accounting for negative values (see Methods).
The plot reveals a positive association. (D) The added variable plot for ln(mRNA/cell) versus sign(min_dist) ln(| min_dist |) after correcting for ln(gene
length). The added variable plot shows a slightly increased positive association, evidence that the relationship detected between expression and distance
to closest neighbor is not a spurious byproduct of the relationship between expression and gene length (i.e., not a consequence of urban genes being
longer than rural ones). Red and black curves represent lowess smooths on the actual data and on random permutations, respectively. (corr) Correlation
coefficient. p-values are in parentheses. (Right table) Mean and median distances to closest neighbor for genes in the urban and rural classes. (Left table)
Mean expression with its standard error, on the original, mRNA/cell, and logarithmic, ln(mRNA/cell), scale, for genes in the two classes. The mean
expression level for the urban class is almost twofold lower than for the rural class.

Chiaromonte et al.

2606 Genome Research
www.genome.org



cessing mechanisms have been shown to influence and coregu-

late each other. In accordance with this highly interrelated pic-

ture, our splicing and stability-related parameters are strongly

correlated, and their effects on expression statistically con-

founded. However, we can still observe these effects individually.

Our results support a strong negative association between mRNA

expression and mRNA stability proxied by mRNA and 3�-UTR

length, and imply a complex role for splicing, with a pattern that

is negative at large exon numbers, but positive at low exon num-

bers. This might be explained by recent findings indicating that

splicing factors have a stimulatory effect on transcriptional elon-

gation (Fong et al. 2001). For genes containing few exons, this

elongation stimulus might overcome the negative effect of abor-

tive splicing events. We also observe that splicing and mRNA

stability parameters account for some but far from all of the nega-

tive association between expression and gene length, lending

support to a critical role of transcriptional elongation. Long

genes might be difficult to elongate because over long distances

chromatin structure is a major barrier (Orphanides and Reinberg

2000) and because long genes have a higher probability of con-

taining elongation pausing sites.

From an evolutionary point of view, as discussed in Vel-

culescu et al. (1999), the genes of the MHKT are particularly in-

teresting because they are likely to be among the most ancient of

all genes, as they code for all the basic cellular processes. Mecha-

nisms affecting these genes might therefore also be ancient. We

propose that the effects of transcriptional interference, transcrip-

tional elongation, and mRNA stability that we have detected are

the vestiges of a simpler, primordial genomic organization in

which gene expression was controlled by a minimal set of tran-

scription factors, and modulated by the size of the DNA segments

to be transcribed and the relative positions of the “genes.” In the

most extreme version of this model, CG-rich primordial promot-

ers might all have fired at the same rate and the level of expres-

sion might have been controlled entirely by interference, rate of

elongation, and mRNA stability.

METHODS

Data Preparation and Preprocessing

We obtained 1183 universally expressed SAGE tags and their per-
cell mRNA counts from http://www.sagnet.org/. We downloaded
a mapping of 272,131 SAGE tags to UniGene IDs from the Na-
tional Center for Biotechnology Information (http://www.
ncbi.nlm.nih.gov). The list was pared down to 410 genes by
eliminating the tags that did not map to any genes, or that
mapped to more than one gene, or to ribosomal RNA. When two
tags mapped to the same gene, only the most highly expressed
tag was retained.

We then downloaded tables containing the RefSeq annota-
tion databases of the April 2003 genome assembly from the UC
Santa Cruz genome browser Web site (http://www.genome.
usc.com) and extracted or calculated values for gene length,
mRNA length, 3�-UTR length, number of exons, and distance
from the neighbor on each side, using MS Access 2000 and MS
Excel 2000. Twelve genes were deleted from our list because they
had no known neighbors, because they were duplicated, or be-
cause they had no 3�-UTR. Five single-exon genes were also elimi-
nated because it was not clear whether they were pseudogenes.
This yielded a final list of 393 genes. Gene length was defined as
the distance from the cap site to the polyadenylation site. The

Figure 5 Relationship between expression and morphological parameters within the rural and urban classes. Scatter plots of ln(mRNA/cell) versus
ln(gene length), ln(mRNA length) ln(3�-UTR length), and ln(exon number), with lowess smooths for rural and urban classes (blue and green curves),
and overall (red curves). Correlations by class are in the upper right corner. The relationships between expression and each of the parameters are
considerably weakened for urban genes, indicating that transcriptional interference might be dominant over the other morphological parameters
influencing gene expression. (corr) Correlation coefficient. p-values are in parentheses.
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3�-UTR length was defined as the distance from the stop codon to
the polyadenylation site.

Data Analysis

Strong concentration at low values and far-reaching “tails,”
which could be observed for many of our variables (e.g., Fig. 2),
were mitigated adopting natural logarithms. This simplified
graphical and numerical investigation of dependence patterns.

We used Pearson correlation coefficients, which capture
sign and size (min = �1, max = +1) of the linear associations be-
tween two variables.

We also used locally weighted scatter-plot smoothers (low-
ess; Cleveland 1979; Cook and Weisberg 1999), which capture
the dependence pattern between two variables on the vertical
and horizontal axes of a scatter-plot. These curves are produced
by (weighted) least-square fitting of a simple line within a win-
dow sliding through the data. The size of the window controls
the degree of smoothing, and is specified in terms of a certain
percentage of the data points (e.g., we always used a sliding win-
dow containing 50% of the points, which represents an interme-
diate degree of smoothing). Moreover, these curves are made ro-
bust by iterating the fit within each window discarding outliers
(we always used five iterations).

To investigate the dependence between two variables after
correcting for a third quantity, we used a modified version of
added variable plots (AVP; Cook 1994; Cook andWeisberg 1999).
We plot residuals from the lowess smooth of the vertical axes
variable on the third variable, versus residuals from the lowess
smooth of the horizontal axis variable on the third variable. For
example, the quantity on the vertical axis of Figure 3A, right
panel, res[ln(mRNA/cell) | ln(exon number)], represents vertical
distances between points and the red curve in Figure 3A, left
panel. The quantity on the horizontal axis of Figure 3A, right
panel, res[ln(gene length) | ln(exon number)], represents vertical
distances from an analogous lowess for ln(gene length) on ln-
(exon number) (data not shown). Thus, when computing a low-
ess on the points of the AVP (red curve in Fig. 3A, right panel), we
visualize the dependence between the component of ln(mRNA/
cell) that is not explained by ln(exon number) and the compo-
nent of ln(gene length) that does not “replicate” information
already provided by ln(exon number) itself.

For studying the effects of transcriptional interference, we
divided genes into an “urban” and a “rural” class. After comput-
ing the distance between the promoters and the poly(A) sites of
each of the MHKT genes and their nearest neighbors on both
sides, we considered the shortest between these two distances,
min_dist. Then, we labeled “urban” the 25% of the MHKT genes
with smallest min_dist, and rural the remaining 75%. Because
distances can be negative (overlapping genes), when passing on
the natural log scale we actually considered the logarithm of the
absolute value, ln(| min_dist |), multiplied by the sign, sign-
(min_dist) (this is +1 if min_dist is positive, and �1 if it is nega-
tive).

When measuring linear association through a correlation
coefficient, significance can be readily assessed through p-values.
However, simple p-values cannot be provided for the significance
of dependence patterns captured by lowess smooths (note that
these curves, unlike typical regression functions, are nonpara-
metric). Thus, we use random permutations of the data to com-
pute lowess smooths that can be used as reference to gage the
significance of the pattern observed on the actual data (Good
2000). In our plots, lowess smooths from random permutations
are represented as thin black lines accompanying the thick red
line representing the lowess computed on the actual data. For
instance, in the Figure 2 inset, the values of ln(mRNA/cell) were
reshuffled at random while keeping those for ln(gene length)
fixed. This produces artificial data in which the marginal distri-

butions of expression and gene length are preserved, but the
dependence between them is eliminated.
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