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Abstract

Upon completion of the human and mouse genome sequences, world-wide sequencing capacity

will turn to other complex organisms. Current strategies call for many of these genomes to be

incompletely sequenced. That is, holes will remain in the known sequence, and the relative order

and orientation of the known sequence fragments may not be determined. Sequence comparison

between two genomes of this sort may allow some of the fragments to be oriented and ordered

relative to each other by computational means. We formalize this as an optimization problem,

show that the problem is MAX-SNP hard, and develop a polynomial time algorithm that is

guaranteed to produce a solution whose score is within a factor 3 of optimal.
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1. Introduction

As international projects determine the genome sequences of the handful of o9cial

model species, attention is turning to plans for sequencing many additional complex

organisms. In the shotgun assembly phase, common to all sequencing approaches, sev-

eral copies of a particular stretch of the genome are randomly partitioned into small

fragments. Approximately 500 basepairs of each fragment are determined using vari-

ations of the Sanger method [9]. Overlapping sets of these reads, can be assembled

into contigs, i.e., presumably contiguous sections of the genomic sequence. Ideally, the

contigs form non-overlapping fragments that account for most of the target genome

sequence. But the order and orientation of the contigs along the chromosome is un-

known, or at least imperfectly known. In particular, for an arbitrary contig, h, it may
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Fig. 1. Use of sequence comparison to orient=order contigs. Contig h (say, of human) includes region a,

which aligns with region c in contig m1 (say, of mouse). Also, another region of h, denoted b, aligns with

dR, the reverse complement of region d of mouse contig m2. We infer that m1 precedes mR
2 , relative to the

orientation in which h is given. Note that the distance between m1 and mR
2 cannot be inferred from such

comparisons.

be unknown whether h or its reverse complement, denoted hR, is present, where hR is

formed by reversing h, interchanging A and T everywhere and interchanging C and G

everywhere.

Two approaches have been proposed for overcoming this problem. The clone by

clone approach [10] adopted by the Human Genome Project (HGP) starts by Inding a

minimal tiling set of clones that covers the target genome. Then the individual clones

are sequenced one at a time using the shotgun approach. Finally contigs of diJerent

clones are ordered, oriented with respect to each other using the clone map. On the

other hand, the whole genome shotgun assembly approach [11] skips the physical

mapping step and sequences unmapped genomic clones. For further assembly it uses a

library of pairs of reads, called mates, from the ends of long inserts randomly sampled

from the genome. The presence of these mates in diJerent contigs serves to order the

contigs and give the approximate distance between them. The result of this assembly

process is, therefore, a collection of sca2olds, where each scaJold is a set of contigs

that are ordered, oriented and positioned with respect to each other.

However, determining the complete sequence of a genome is quite expensive with

either approach. Because researchers have been extracting biological information by

studying conserved regions [4,7], genetic data banks have rich contig information for

many species. By comparing the conserved regions present in contigs of two organisms

that are close in evolutionary terms, it might still be possible to infer some order=orient

relationships. This process was manually performed by [8]. Fig. 1 illustrates the sort

of inference that is possible.

We model the problem of determining order=orient relationships from alignments be-

tween contigs as follows. Data consists of a set of “h-contigs” and a set of “m-contigs”,

where each contig is simply an ordered list of conserved regions having associated

alignment scores. We use 	(a; b) to denote the score of the alignment between a and

b, where a or aR is a conserved region of an h-contig and b or bR is a conserved region

of an m-contig. An example of a permissible data set consists of contigs h1: 〈a; b; c〉,
h2: 〈d〉, m1: 〈s; t〉, m2: 〈u; v〉 and the alignment scores 	(a; s)=4, 	(a; t)=1, 	(b; tR)=3,

	(c; u) = 5, 	(d; t) = 	(d; vR) = 2. See Fig. 2. In this preliminary analysis of the prob-

lem, we have made the critical assumption that any two conserved regions are either

identical or completely distinct. That is, we do not model any sort of partial overlap

or strict containment between two conserved regions from the same species.
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Fig. 2. Picture of a sample set of data, discussed in the text.

Fig. 3. Two potential inconsistencies among alignments between contigs. In the Irst example, contig h

contains regions a and b, where a aligns with region c of contig m, and b aligns with dR, where d is

another region of m. The a− c alignment supports the current orientation, while the b− d alignment calls

for reversal of m. The second example violates our requirement that aligning regions be in the same order

in the two sequences.

Alignments involving conserved regions in contig h1 may serve to orient and order

several m-contigs relative to each other. Some of these m-contigs may in turn orient

and order h1 relative to additional h-contigs, and so on. This leads to an “island” 1

of contigs that are oriented and ordered relative to one another. With ideal data, this

process would partition the set of contigs into islands, such that inter-island order=orient

relationships cannot be determined from the alignments. In reality, the set of given

alignments is frequently inconsistent with any proposed orientation and ordering of

the contigs. Simple examples are shown in Fig. 3. More complex examples arise in

practice when regions have been shuNed by evolutionary processes, when incorrect

alignments are computed, and when contigs are incorrectly assembled from the shorter

segments.

Our goal is to determine orientations and an order for each of the two sets of contigs

that, possibly together with deletions of some of the conserved regions, gives two

equal-length and consistently ordered lists of conserved regions showing high overall

similarity. Ideally, this would mean maximizing the sum of the scores 	. For a simple

example, consider the data set given several paragraphs above. We can delete (i.e.,

ignore) b and t, reverse h2 and place it after h1 (giving 〈a; c; dR〉), then place m1

before m2 in their given orientation (giving 〈s; u; v〉), which yields the score 	(a; s) +

	(c; u) + 	(dR; v) = 4 + 5 + 2 = 11. See Fig. 4 for a picture of the solution.

Note that once orientations and an order of the contigs are chosen, it is easy to decide

how sites should be deleted to maximize the score—this is simply the classic problem

1 While similar to scaJolds of [11], islands present a diJerent combinatorial problem because they involve

fragments of diJerent species, do not imply any distance information and cannot overlap with other islands.



122 V. Veeramachaneni et al. / Discrete Applied Mathematics 127 (2003) 119–143

Fig. 4. Solution to the orient=order problem of Fig. 2. All alignments pictured in Fig. 2 that are inconsistent

with this layout have been discarded.

of aligning two lists of symbols. (Here, however, each symbol of the “sequence”

denotes a conserved region, rather than an individual nucleotide.) The di9culty lies

with determining an optimal set of orient=order operations.

One of our results indicates that no polynomial-time algorithm can be guaranteed to

orient and order the contigs so as to always maximize the resulting score. Indeed, even

if we make a number of simplifying assumptions, such as (1) each conserved region

is involved in precisely one alignment (e.g., for each a, 	(a; b)¿ 0 for just one b),

(2) there is only one m-contig and (3) each h-contig has only two conserved regions,

the problem of computing an optimal set of orient=order operations is MAX-SNP hard

(Theorem 2).

This formal result indicates that there exists a number �¡ 1 such that any

polynomial-time orient=order algorithm will sometimes produce a solution whose total

score is less than � times the optimal score. In particular, this result implies that for

any existing heuristic one can generate data such that the heuristic result will be far

from the correct one. This poses a challenge that can be addressed in two ways:

• Characterize the types of data that would “fool” the heuristic. Any time the heuristic

is used, show that the input does not contain data with these “bad” properties.

• Find an algorithm that is designed on diJerent principles and compare the two

outcomes.

While the Irst option is preferable, it is di9cult to formalize. Approximation algo-

rithms oJer alternative design principles to greedy heuristics and are the focus of this

paper.

We develop a (3 + �) approximation algorithm (Theorem 6) for the order=orient

problem. The formal developments presented in this paper, including results showing

how algorithms for certain simpler problems can be combined to solve a more gen-

eral problem, provide a conceptual framework for designing eJective algorithms for

computing high-scoring orient=order operations.

2. Problem statement with variations

2.1. Consensus sequence reconstruction—CSR

Assume that we have two sets of DNA fragments, one for each species. Let us call

these sets H and M. We view each fragment as a sequence of regions. An occurrence

of a region in a sequence can be normal or reversed.
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Formally, we view each region as a symbol of a duplicated alphabet �̃=�∪�R, and

each fragment as a word from �̃
∗

. To clarify the meaning of the reversal operation,

we list its properties:

• � ∩ �R =?;

• for a∈�, aR ∈�R, and for a∈�R, aR ∈�;

• for u; v∈ �̃
∗

, (uv)R = vRuR;

• for u∈ �̃
∗

, (uR)R = u;

• for a; b∈ �̃, 	(a; b) = 	(aR; bR), where 	 is a function 	 : �̃× �̃ → R.

We introduce an extra padding symbol ⊥ such that ⊥R =⊥ and we extend the score

function 	 by setting

	(a;⊥) = 	(⊥; a) = 0; ∀a∈ �̃:

For s∈ �̃
∗

we deIne the set of padded sequences Ps as the set of sequences obtained

from s by inserting the padding symbol ⊥ an arbitrary number of times.

For s; t ∈ (�̃ ∪ {⊥})∗ where s= a1a2 : : : al and t = b1b2 : : : bl′ , we deIne

Score(s; t) =





0 if l 
= l′;

l∑

i=1

	(ai ; bi) otherwise:

Our general goal is to Ind an optimal conjecture for a consensus sequence for H

and M. More formally,

De�nition 1. For a set of fragments; F= {f1; : : : ; fk}; we deIne Conj(F) the set of

valid conjecture sequences. A conjecture f ∈Conj(F) is formed in three stages

1. For each fragment fi we select some padded sequence si ∈Pfi.

2. Some of si’s are replaced by their reversals.

3. f = s (1) : : : s (k); for some permutation  of [1; k].

A conjecture pair is (h;m)∈Conj(H) × Conj(M). Our goal is to maximize

Score(h;m).

2.2. Consistent match sets

Our algorithm will build conjecture pairs from smaller parts called matches, which

pair together intervals selected from fragments of H and M.

Given a fragment h= a1 : : : an, the site h(i; j) represents the contiguous subfragment

ai : : : aj. A match is a pair of sites from fragments of diJerent species.

De�nition 2. A conjecture pair (h;m) with a positive score produces a set of matches

as follows:

1. Suppose h is formed as s1s2 : : : sk and m is formed as t1t2 : : : tl in Step 3 of DeInition

1. We view this pair as a single word w where letters are columns of two symbols

of �̃ ∪ {⊥}.
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Fig. 5. The conjecture pair representing the solution shown in Fig. 4. Thick lines indicate padded frag-

ments (or their reversals), thin lines separate matches. The set of matches consistent with this pair is

!1 = (h1(1; 2); m1(1; 2)), !2 = (h1(3; 3); m2(1; 1)) and !3 = (hR2 (1; 1); m2(2; 2)).

Fig. 6. A conjecture pair (h;m) divided into matches and the sites classiIed according to DeInition 3.

2. As shown in Fig. 5; we split w at ends of si’s and ti’s. The resulting pieces can be

called padded matches.

3. Given a padded match; we obtain a match (pair of sites) by splitting it into two

rows and deleting all ⊥s from both the rows.

A set of matches is consistent if it is produced from some conjecture pair.

De�nition 3. If h= h(1; n) then the sites in h can be classiIed as:

full: h(1; n) or; equivalently; h

border: h(1; i) or h(i; n)

inner: none of the above

A match that involves a full site is called a full match, a match that involves a border

site is called a border match. In Fig. 6 !1; !4; !5; !7 are full matches, and !2; !3; !6 are

border matches. One can see that we need to consider these two kinds of matches only.

Note that a match is a full match exactly when both ends of the respective padded

match correspond to the ends of the same padded sequence e.g., sequence t3 in Fig. 6.

De�nition 4. Given a site Sh in some fragment of H and a site Sm in some fragment

of M; we formulate the deInition for match score MS( Sh; Sm) in several steps.

• For Sh; Sm∈ �̃
∗

;

P score( Sh; Sm) = max
u∈P Sh

max
v∈P Sm

Score(u; v):

• If one of the sites Sh; Sm is full then the match score of Sh and Sm is

MS( Sh; Sm) = max(P score( Sh; Sm);P score( Sh; SmR)) (See Fig: 7):
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Fig. 7. Matches formed from an inner site and a full site.

Fig. 8. Matches formed from border sites.

• If neither Sh nor Sm is a full site; then the match score of Sh and Sm is deIned according

to the method described by Fig. 8.

Our algorithm does not depend on the way MS( Sh; Sm) is deIned. However, this

deInition provides a correct model for our sequence reconstruction problem.

The score of a match and the padded sequences that support that score, represent the

optimum alignment of the participating sites. We are interested in Inding a consistent

set of matches S with the maximum Score(S) =
∑

!∈S MS(!).

Remark 1.

• Instead of using padded sequences as building blocks of conjecture sequences; we

can just as easily use subsequences formed by deleting arbitrary characters from a

sequence. The score function for matches and the discussion of consistent match sets

remains unchanged under this formulation.

• Given a conjecture pair (h;m); if S is the set of matches derived from (h;m) then

Score(S) = Score(h;m).

• Given a consistent set of matches S we can easily compute a conjecture pair (h;m);

such that Score(S) = Score(h;m).

According to the last remark, we can formulate an equivalent version of the CSR

problem: Ind a consistent set of matches with maximum total score.
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3. Simpler versions of the problem

3.1. Unambiguous CSR—UCSR

We form a restricted version of the CSR problem by demanding that 	(a; b) = 0

for a 
= b. Moreover, we demand that every letter occurs exactly once in each of H

and M (counting aR as an occurrence of a). Suppose we also use subsequences as

building blocks for conjectures. Under these restrictions, if we choose a letter for

one of the two conjectures, it is determined what letter should match it in the other

conjecture, so we call this the unambiguous CSR problem, or UCSR. It is easy to

see that an optimum solution (h;m) to an UCSR instance satisIes h = m, so we can

restrict the valid solutions to single sequences from Conj(H) ∩ Conj(M) and replace

	 with 	′ so that 	′(a) = 	(a; a). This way, for a valid solution h = a1 : : : al we have

Score(h) =
∑l

i=1 	
′(ai).

We can show that UCSR, while simpler, is not easier to approximate than CSR.

Lemma 1. Let �¿ 0. There exist polynomial time computable functions "0; and "1
such that for every instance X of CSR

1. "0(X ) is an instance of UCSR;

2. for every solution (h;m) of X ; there exists a solution f of "0(X ) such that

Score(f) = Score(h;m);

3. for every solution x of "0(X ); "1(x) is a solution of X that satis:es Score("1(x))¿

Score(x)(1− �).

Proof. Let X = (H;M; 	) be an instance of CSR. Let �= {a1; : : : ; aK} be the set of

letters that occur in H∪M. By replacing multiple occurrences of a letter with distinct

replica; and modifying the generator of Score; 	; appropriately; we modify X to an

equivalent instance of CSR where each letter occurs in H ∪ M only once; and no

letter occurs in its reversed form. Let p = �1=�� and s = 2pK . For each letter ai ∈�

and 16 l6 s we deIne

uil = ai1; la
i
2; l : : : a

i
K; l and vil = bi1; lb

i
2; l : : : b

i
K; l:

Next; we deIne

wi
l =

{
uilv

i
l if ai occurs in H;

uil(v
i
s+1−l)

R if ai occurs in M:

Finally; xi = wi
1 : : : w

i
s.

Now we are ready to deIne "0(X )= (H′;M′; 	′). We obtain sets H′ and M′ from

H and M by replacing each ai with xi. Next, we reduce the alphabet size of "0(X )

by 50% by identifying the following pairs of letters: aij; l with a
j
i; l and bij; l with b

j
i; l.

This identiIcation allows us to deIne 	′(aij; l) = 	(ai ; aj)=s and 	′(bij; l) = 	(ai ; a
R
j )=s.

To show Property 2, consider a solution (h;m) of X , where h = (c1 : : : cL) and

where m=(d1 : : : dL). The corresponding solution of "0(X ) is the sequence )(c1; d1) : : :
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)(cL; dL), where )(c; d) is the word formed out of all the letters that are common to

the replacement words of c and d. More formally, we deIne

)(c; d) =





aij;1a
i
j;2 : : : a

i
j; s if c = ai and d= aj ;

(aij;1a
i
j;2 : : : a

i
j; s)

R if c = aRi and d= aRj ;

bij;1b
i
j;2 : : : b

i
j; s if c = ai and d= aRj ;

(bij;1b
i
j;2 : : : b

i
j; s)

R if c = aRi and d= aj :

One can see that this is a valid solution for "0(X ). Moreover, we replace a pair of

letters (ci ; di) with a word of length s, in which every letter scores 	(ci ; di)=s, thus the

overall score is unchanged.

Consider a solution f of "0(X ). Before we deIne "1(f) and prove Property 3, we

will make some preliminary observations. Consider a word xi that replaced a letter

from H of the original CSR instance X . Because xi is a sub-word of a word from

H, if f contains any letters from xi , then they form a contiguous sub-word of f, let

us call it yi.

In turn, yi can be split into subsequences that share letters with various xjs that

replaced letter occurrences in M. Again, each such subsequence forms a contiguous

sub-word of yi, say yij, and there are at most K such sub-words. Now we can make

an observation about the positions of the letters of yi within xi (or of (xi)R). If two

consecutive letters belong to the same yij, their position in xi diJer by at least 2K , and

otherwise they diJer by at least 1. However, there can be at most 2K − 1 pairs of the

second kind. Therefore if we have l+ (2K − 1) + 1 letters in yi, the positions of the

Irst and the last diJer by at least 2Kl + (2K − 1), hence 2Kl + (2K − 1)¡ 2Ks and

l6 s− 1. We can conclude that yi contains less than s+ 2K letters.

We deIne a pair of symbols (letters or reversed letters) (ci ; di) such that a symbol a

from )(ci ; di) occurs in yi and there it has the largest score. Note that 	′(a)¿Score(yi)=

(s+ 2K), thus

	(ci ; di)¿Score(yi)
s

s+ 2k
= Score(yi)

(
1−

2K

s+ 2K

)
¿Score(yi)(1− �): (1)

If yi is empty, then both ci and di are words as well. Finally, we deIne

"1(f = y (1) : : : y (K)) = (c (1) : : : c (K); d (1) : : : d (K)) = (h;m):

Inequality (1) shows that Score(h;m)¿Score(f)(1− �).

The following theorem is an immediate consequence of Lemma 1.

Theorem 1. If there exists a polynomial time algorithm that solves the UCSR prob-

lem with approximation ratio c; then there exists a polynomial time algorithm that

solves the CSR problem also with ratio c.
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3.2. Consistent subsets of integer pairs—CSoP

We will now show that a very restricted version of UCSR is MAX-SNP hard. In

particular, we impose the following restrictions:

1. the alphabet is of the form �= {a1; : : : ; a2n} and M= {a1a2 : : : a2n};
2. H={ai(1)aj(1); : : : ; ai(n)aj(n)}, where the pairs {i(k); j(k)} form a partition of [1; 2n]

and i(k)¡j(k) for k ∈ [1; n];

3. 	(ai ; aj) = 1 if i = j and 0 otherwise.

In those terms the task is to Ind a set U ⊂ {1; 2; : : : ; 2n} such that if {i(k); j(k)} ⊂ U

and i(k)¡l¡j(k) then l 
∈ U and such that |U | is maximal. We call this problem

consistent subsets of Pairs, CSoP. We will show that

Theorem 2. CSoP is MAX-SNP hard.

Proof. Consider a solution U to an CSoP instance. We say that U is normal if it con-

tains at least one element in each pair {i(k); j(k)}. Suppose that U is disjoint with an

input pair {i(k); j(k)} and we try to insert i(k) to U; this insertion can create an invalid

solution only if for some k ′ we have i(k ′)∈U; j(k ′)∈U and i(k ′)¡i(k)¡j(k ′). In

this case we can replace U with U ′ = U − {i(k ′)} ∪ {i(k)}; |U ′| = |U | the number

of pairs disjoint with U ′ is lower. We may conclude that for every solution U there

exists a solution U ′ such that |U ′|= |U | and U ′ intersect every one of the given pairs.

We say that U ′ is a normal solution.

To prove our claim, we will reduce 3-MIS to CSoP.

The input to 3-MIS is a 3-regular graph, with 2n nodes, a feasible solution is an

independent set of nodes, and the goal is to maximize the size of this independent

set. Berman and Karpinski [3] have formally shown that 3-MIS is MAX-SNP hard (in

folklore, this was an immediate consequence of the original paper on MAX-SNP class

by Papadimitriou and Yannakakis). We choose the following representation of the input

graph: an 2n× 3 matrix A such that {i; j} is an edge iJ j∈{A[i; 1]; A[i; 2]; A[i; 3]}. We

also require that the consecutive nodes are never adjacent, i.e., there are no edges of

the form {i; i + 1} (for n¿ 6 we can order the nodes in such a manner using Dirac’s

theorem [6]).

In our approximation preserving reduction, the instance translation is as follows:

M= {a1 : : : a10n}; H=Hnodes ∪Hedges, where

Hnodes = {{a5i−4a5i}: 16 i6 n}

and

Hedges = {{a5i−ba5j−c}: i¡ j; A[i; b] = j and A[j; c] = i}:

Consider a normal solution U . One can show that U contains exactly one element

in each edge pair {5i − b; 5j − c}, otherwise there exists node k such that i¡ k ¡j,

hence 5i− b¡ 5k− 4¡ 5k ¡ 5j− c, hence the node pair {5k− 4; 5k} is disjoint with

U and U is not normal.
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Consider now two node pairs that are contained in U , {5i− 4; 5i} and {5j− 4; 5j}.
One can see that no edge connects i and j, otherwise the respective edge pair would

be disjoint with U . DeIne W = {i: {5i − 4; 5i} ⊂ U}. As we observed, W is an

independent set. Moreover, the size of U equals 5n+ |W |.
Consider now an independent set W . For every edge e there exists an endpoint of e,

say i(e) such that i(e)∈W , we can assume that e= {i(e); A[i(e); b(e)]}. We can form

a normal solution with 5n+W elements as follows:

{5i: i is a node} ∪ {5i(e)− b(e): e is an edge} ∪ {5i − 4: i∈W}:

Therefore this is an approximation preserving reducibility.

3.3. Reducing CSR to 1-CSR

We now consider 1-CSR, i.e., the CSR problem with the following restriction: set

M consists of exactly one sequence. We will show the following theorem.

Theorem 3. If there exists an approximation algorithm A that solves 1-CSR with

approximation ratio r; then there exists an approximation algorithm A′ that solves

CSR with approximation ratio 2r.

Proof. For F = {u1; : : : ; un} we deIne F′ = {u1 : : : un}; a set containing only the

concatenation of all words from F; in some arbitrary order. The algorithm A′ processes

the input instance of CSR; (H;M; 	); as follows: it runs A twice; on (H;M′; 	) and

on (M;H′; 	); and selects the better of the two solutions.

Let Opt(X ) be the score of the optimum solution for instance X . It will su9ce to

show that

Opt(H;M′; 	) + Opt(M;H′; 	)¿Opt(H;M; 	) (2)

because inequality (2) implies that the solution found by A′ has a score that is at least

max

(
1

r
Opt(H;M′; 	);

1

r
Opt(M;H′; 	)

)
¿

1

2r
Opt(H;M; 	):

Assume that H = {h1; : : : ; hk} and M = {m1; : : : ; mk′}. For convenience, assume that

each letter appears only once in H∪M. Consider an optimum solution for (H;M; 	),

i.e., a pair of words h=s (1) : : : s (k) ∈Conj(H) and m=t (1) : : : t (k′) ∈Conj(M), where

s (i) is a (possible reversed) padded sequence of hi (and similarly for ti). Given that

(h;m) = (a1 : : : al; b1 : : : bl) for some l and Score(h;m) =
∑l

i=1 	(ai ; bi), we will also

view this solution as the sequence of pairs (a1; b1); : : : ; (al; bl). We will paint these pairs

with two colors, say blue and yellow, and then we assemble a solution of (H;M′; 	)

from all the blue pairs, and a solution of (M;H′; 	) from all the yellow pairs. By the

very construction, the scores of these two solutions add to Score(h;m).

The coloring of pairs requires some preliminary steps. First, we tag every letter in

sj with j, and we do the same with tj. This way, a pair (ai ; bi) has a pair of tags, say
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(j; j′). If a pair has tag (j; j′), we will say that j is an H-partner of j′, and j′ is an

M-partner of j. The partners can be ordered as follows: if for some i¡ i′ the pairs

(ai ; bi) and (ai′ ; bi′) have tags (j; j1) and (j; j2), then j1 is an earlier M-partner of j

than j2; similarly, if these tags are (j1; j) and (j2; j), then j1 is an earlier H-partner of

j than j2. We will paint the tags, and each will have the color of its tag. Our coloring

rules are the following:

• If j′ is the Irst M-partner of j, then we paint the tag (j; j′) with blue.

• If j is the Irst H-partner of j′, then we paint the tag (j; j′) with yellow.

A blue solution is formed in a simple manner: we rearrange the blue pairs (and reverse

them if necessary) in such a way that their b’s form a subsequence of m1 : : : mk′ . To

show that we have formed a correct solution for (H;M′; 	) it remains to show that

the pairs with a’s from a particular sj form a contiguous part of this solution, and

that they are ordered as in hj. If such a pair is present, then, because it is blue, it

has a tag (j; j′) where j′ is the Irst M-partner of j. The pairs with tag (j; j′) form

a contiguous part of pairs with b’s from tj′ . When we form the blue solution from

the original one, we cut the original solution into pieces corresponding to various t’s,

reverse if necessary, remove the yellow pairs and reassemble in a new order. During

this process, the fragment with tags (j; j′) remains contiguous and keeps its original

ordering.

The yellow solution for (M;H′; 	) is formed identically. To show (2) it su9ces

to show that each tag is painted, so each 	(ai ; bi) will be added to the score of one

of the two solutions (if a tag is painted with two colors, then 	(ai ; bi) is added to

both scores, thus increasing the left-hand side of (2)). Consider a tag (j; j′). The

positions of ai’s from sj form an integer interval, say [d; e], and positions of bi’s from

tj′ form another interval, say [d′; e′]. Thus a pair (ai ; bi) has tag (j; j′) if and only if

max(d; d′)6 i6min(e; e′). One can see that if d′6d then j′ is the Irst M-partner

of j′, and if d6d′, then j is the Irst M-partner of j. In the former case tag (j; j′) is

blue, and in the latter it is yellow.

3.4. 1-CSR and interval selection problem—ISP

A 1-CSR problem instance has the form (H; m; 	). Because each fragment of H is

involved in at most one match, we can assume that in each match the site from H is

full. Thus each match in a solution can be described as (k; [i; j]), which denotes pair

(hk ; m(i; j)). Selecting such a match yields proIt MS(hk ; m(i; j)).

We can reduce 1-CSR to a more abstract interval selection problem, ISP for short,

where we are given set A of integer intervals and a non-negative proIt function

p : [1; k]× A → R+. The task is to select at most one interval of A for each i∈ [1; k],

so that the selected intervals are disjoint and the sum of proIts is maximal. ISP was

studied in the context of scheduling 2 by Bar-Noy et al. [1], who described an algo-

rithm with ratio 2. Later Berman and DasGupta [2] described a two phase algorithm

that obtains ratio 2 and runs in time O(n log n), where n= k|A|.

2 More general versions of ISP are considered with diJerent Ai for each i∈ [1; k].
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Our reduction deInes as A the set of all subintervals of [1; |m|] and for each fragment

hi ∈H sets p(i; [d; e]) = MS(hi ; m(d; e)). Clearly an approximation algorithm for ISP

yields an algorithm for 1-CSR with exactly the same approximation ratio.

Corollary 1. There exists a polynomial time algorithm for the CSR problem with

approximation factor 4.

4. Approximation algorithms for CSR

4.1. Iterative improvements

We will maintain the solution to a CSR problem instance as a consistent set of

matches. To form tools for solving the general problem, we will Irst describe how to

search for one type of matches only i.e., only border matches or only full matches.

The algorithms we use there are selected in such a way that later we will be able to

combine them into an algorithm that searches for both types of matches. We tackle

diJerent versions of the problem in the following manner:

• We deIne an iterative improvement algorithm

– The algorithm is deIned by set I of improvement methods, i.e., a Inite set of

routines that have a constant number of parameters of the form f(i; j) where f

is a fragment. For R∈I, and a parameter vector p, an improvement attempt

I =R(p) changes the current solution by discarding some matches and making

some new matches.

– gain(I), the gain of an improvement attempt I , is the increase in total score

after the improvement attempt I ; if a given I is not applicable to the current

legal set then gain(I) = 0.

– The algorithm starts with an empty set of matches and makes improvement

attempts with positive gain until none exists.

• If the scores are large numbers, gains can be comparatively very small and we cannot

easily bound the running time. To ensure that our algorithm runs in polynomial time,

we use the scaling method described by Chandra and HalldWorsson [5] as follows.

We Irst use the simple algorithm of Corollary 1 to obtain a solution with score X .

We run the local improvement algorithm after truncating the weights of all match

scores to integer multiples of X=k2, where k is an upper bound on the number of

possible matches. Since the score of the optimal solution is at most 4X and each

local improvement has gain at least X=k2, the number of improvements is limited to

4k2. This approach underestimates the optimal solution by at most X=k and hence,

increases the approximation ratio by a factor (k + 1)=k. Thus, when we prove an

approximation ratio ", the ratio actually proven has the form "(k + 1)=k or " + �.

However, in practice, alignment scores should have few precision bits and this step

should not be necessary.

• In the analysis, we use the optimum solution, Opt, and the set of matches gener-

ated by our algorithm, L, to deIne a collection of improvement attempts, J. J is

constructed such that each attempt I ∈J removes matches 1(I) ⊆ L and creates
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matches !(I) ⊆ Opt. Since the algorithm has terminated, no improvement has a

positive gain which leads to the inequality

∑

I∈J

Score(!(I))6
∑

I∈J

Score(1(I)):

By showing that the score of each match of Opt appears in the term on the left

exactly n1 times and that the score of each match of L appears on the right at most

n2 times, we have n1 × Score(Opt)6 n2 × Score(L). In this manner we prove that

the algorithm deIned by the set of improvement methods has approximation ratio

(n2=n1) + �.

In deIning the improvement methods and in the subsequent analysis we use the

following notions:

• The solution graph of a set of matches S is the bipartite graph (H∪M;E), where

{h; m}∈E iJ S contains a match with sites in h and m.

• The connected components of this graph are called islands.

• In an island that consists of one fragment only, the fragment is simple.

• In an island that consists of two fragments only, one of the fragments is simple and

the other multiple.

• In other islands, fragments that participate in a single match are simple and fragments

that participate in more than one match are multiple.

De�nition 5. In the following deInitions f is a fragment; Sf; Xf are sites in f; S a

consistent set of matches and F a set of fragments

• Mult(S) is the set of all multiple fragments of S.

• Simp(S) is the set of all simple fragments of S.

• Site f(i; j) is contained in f(i′; j′) if i′6 i6 j6 j′.

• Site f(i; j) is adjacent to f(i′; j′) if i′ = j + 1 or j′ = i − 1.

• For f∈Mult(S); Match( Sf; S) = {g | (g; Xf)∈ S and Xf is contained in Sf}. We can

extend the deInition to sets of sites.

• Cb(f; S); the contribution of the fragment f to the solution S; is the sum of scores

of all match scores in S involving f. The contribution of a set of fragments F is

the sum Cb(F; S) =
∑

f∈F Cb(f; S).

• ŜH is the set if all sites of fragments of H that participate in matches of S. ŜM is

deIned similarly. Ŝ = ŜH ∪ ŜM.

• f(i; j) is hidden by f(i′; j′) if i′¡i6 j¡ j′; if f(i′; j′)∈ Ŝ ; then we also say that

f(i; j) is hidden by S. Note that if (f; Sg)∈ S; then only the border sites of f are

not hidden.

4.2. Full CSR

In Full CSR problem we are limiting the legal solutions to a given CSR instance to

those that contain full matches only.

Consider the solution graph of a solution to a Full CSR problem instance. Because

each match in this solution contains a full site, for each edge in our graph one of
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the ends has one neighbor only. Consequently, in each island, at most one node is a

multiple fragment.

Our improvement methods create new full matches using two-phase algorithm,

TPA(B; S), where

• B is a union of sites of M and deInes

Sites(B) = { Sm: Sm; viewed as an interval; is contained in B};
• S is the current solution and is used to deIne the proIt function

p(h; Sm) =MS(h; Sm)− Cb(h; S).

We run TPA(B; S) with index set H, interval set Sites(B) and proIt function p. In

our algorithms TPA(B) is a shorthand for TPA(B; S) where S is the current solution.

Lemma 2. Let Opt be any optimal solution. A run of TPA(B; S) creates a set of

matches with the sum of scores at least

hope(B; S) =
1

2

∑

f∈Match(B;Opt)

(Cb(f;Opt)− Cb(f; S)):

Proof. From the deInition of the proIt function; we see that each fragment f∈
Match(B;Opt) participates with score Cb(f;Opt)− Cb(f; S). Since TPA has approx-

imation ratio 2 the result follows.

Lemma 3. If for each fragment of H∪M we know whether it is simple or multiple

in Opt; then Full CSR has a 2-approximation algorithm.

Proof. Let H =Hsimp ∪Hmult ; where Hsimp =H ∩ Simp(Opt). Similarly let M =

Msimp ∪Mmult. Let S be the set of matches generated by the following algorithm:

1. Run TPA(Hmult) with index set Msimp.

2. Run TPA(Mmult) with index set Hsimp.

Since no fragment is involved in both TPA runs; from Lemma 2 it follows that:

Score(S)¿ 1
2
Cb(Match(Hmult); Opt) +

1
2
Cb(Match(Mmult); Opt)

¿
1
2
(Cb(Msimp; Opt) + Cb(Hsimp; Opt))

¿
1
2
Cb(Simp(Opt); Opt)

¿
1
2
Score(Opt):

The algorithm of Lemma 3 can be used only if the role that each fragment plays in

Opt is known. Since this information is not generally available, the rest of this section

describes a more complicated iterative improvement algorithm.

Let S be the current set of matches. In the improvement methods described below,

a site Sf may need to be prepared for a match. The manner of preparation of the site

depends on the classiIcation of f:

• f∈ Simp(S): detach f from its match (if any).
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Fig. 9. Two cases (a), (b) of improvement attempt I1(f; Sg; Xg) are shown. In both cases preparation of f

detaches it from g1. In (a) preparation of Xg detaches f2 and restricts matches made by f1; f3. In (b)

preparation of Xg detaches g from f1. Sites on which TPA is run are Illed with slanted lines.

• f∈Mult(S): if the site is hidden by S it cannot be prepared (and the improvement

that speciIes a match of Sf cannot proceed). Otherwise, restrict any match of the

form (g; Xf) to (g; Xf − Sf). Note that if Xf is contained in Sf, g becomes completely

detached.

Our iterative algorithm Full Improve has one improvement method.

I1(f; Sg; Xg)

If Xg contains Sg and is not hidden by S,

1. Prepare the sites f and Xg.

2. Match f with Sg (intuitively we plug in f to site Sg).

3. Run TPA( Xg− Sg).

4. If g is detached from some site Sf 1 during preparation of Xg

in Step 1, run TPA( Sf 1).

We say that Sg is the target of this improvement attempt.

Fig. 9 shows two cases of an I1 improvement attempt. Only Steps 1–3 are executed

in the Irst case. Step 4 is executed in the second case because g is detached during

preparation.

Let L be the consistent set of matches generated by our improvement algorithm. In

the analysis that follows, we assume that the optimum legal solution is Opt.

De�nition 6. Suppose g∈Mult(Opt).

• If ( Sf; Sg)∈L and Sg hides Xg∈ Ôpt we say that f owns TPA site Xg. This deInes

“owns” and “TPA sites”.

• A TPA zone is the union of adjacent TPA sites.

• If ( Sf; Sg)∈Opt and Sg is not part of any TPA zone; then Sg is a plug-in site. See

Fig. 10.

Remark 2. The following remarks can be easily veriIed:

• Each TPA zone has a single owner.

• A TPA zone always extends between two plug-in sites (but not vice versa).
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Fig. 10. g∈Mult(L) is partitioned into TPA zones and plug-in sites. Arrows point to the owners. Matches

of Opt are shown using fragments with dashed outlines. g(1; 8)∈ L̂ hides g(3; 4); g(5; 6)∈ Ôpt. Therefore

g(3; 6) = g(3; 4)∪ g(5; 6) is a TPA zone owned by f1. g(1; 2); g(7; 10); g(11; 12) are not hidden by any site

of L̂ so they are plug-in sites.

Fig. 11. TPA zones associated with plug-in sites. Fragments f1; f2; g∈Mult(Opt) are partitioned into

TPA zones and plug-in sites. TPA zone Sf 1 is associated with the two plug-in sites adjacent to it

because f1 ∈ Simp(L). TPA zone Sg of g∈Mult(L) is not associated with its neighbors because its

owner f1 ∈Mult(Opt). TPA zone Xg of g∈Mult(L) is associated with its neighbors because its owner

f3 ∈ Simp(Opt).

• Any fragment of Mult(Opt) is partitioned into TPA zones and plug-in sites.

• Any fragment of Simp(L) ∩Mult(Opt) has at most one TPA zone.

De�nition 7. TPA zone Sg is associated with plug-in site Xg if

• Sg is adjacent to Xg and

• g∈ Simp(L) org∈Mult(L) but some f∈ Simp(Opt) owns Sg. See Fig. 11.

• zone( Xg) is the union of plug-in site Xg and the TPA zones associated with it.

We now construct the collection (multi-set) of improvement attempts J. Each at-

tempt of J targets a plug-in site. For a plug-in site Sg, we will use the short-hand

notation I1( Sg) to denote the attempt I1(f; Sg; zone( Sg)), where (f; Sg)∈Opt. For each

plug-in site Sg, J has one improvement attempt I1( Sg).

In our analysis, we now estimate gain(J). In the improvement attempts of the

algorithm a match is either made explicitly in Step 2 of an I1 improvement method

or as a result of a TPA run. The construction of J ensures that the explicit matches

attempted are matches of Opt and that TPA runs are made only on TPA zones of

multiple fragments. Therefore, using hope as a lower bound on the sum of scores of

matches created by a TPA run, we can compute a lower bound of gain(J) in which
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the positive terms are scores of matches of Opt and the negative terms are scores of

matches of L. We show that in this estimate of gain(J):

• the score of each match of Opt is added exactly once,

• the score of each match of L is subtracted at most 3 times.

Since no improvement attempt has a positive gain we then have

0¿ gain(J)¿ Score(Opt)− 3× Score(L) (3)

and the required approximation ratio follows.

Lemma 4. TPA is applied to each TPA zone exactly twice.

Proof. Let Sg be a TPA zone.

• If Sg is associated with the neighboring two plug-in sites; the I1 attempts that target

these plug-in sites run TPA on Sg in Step 3.

• Otherwise; Sg is owned by some f∈Mult(Opt) and f has two plug-in sites. The

improvement attempts that target these plug-in sites; detach f from g and run TPA

on Sg in Step 4.

Lemma 5. The score of each match of Opt is added exactly once in gain(J).

Proof. Consider any match (f; Sg)∈Opt. Since g∈Mult(Opt) can be partitioned into

plug-in sites and TPA zones there are two possibilities:

• Sg is a plug-in site: the attempt I1( Sg)∈J so MS(f; Sg) is added once to the estimate

of gain(J).

• Sg is a TPA site: according to Lemma 4 two TPA runs are made on the TPA zone Xg

containing Sg. Since f∈Match( Xg; Opt) it follows from Lemma 2 that together these

runs add Cb(f;Opt) =MS(f; Sg) to the estimate of gain(J).

Note that since

Score(L) =
∑

f∈Simp(L)

Cb(f; L) =
∑

f∈Mult(L)

Cb(f; L) (4)

all the negative terms in the estimate of gain(J) can be expressed in the form −(hlf+

aplf + pplf)Cb(f; L) where

• hlf, or hope loss of f, is caused by the use of Cb(f; L) in the estimates of hope;

• aplf, or active preparation loss of f, is caused by detaching f during preparation

of sites on fragment f itself;

• pplf, or passive preparation loss of f, is caused by detaching f during preparation

of sites on other fragments.

Lemma 6. For f∈ Simp(Opt) we have hlf + aplf = 1.

Proof. Suppose f∈ Simp(Opt); i.e.; (f; Sg)∈Opt for some Sg. There are two cases to

consider:
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Fig. 12. The four types of matches in which g∈Mult(Opt)∩Mult(L) participates in L. Matches are restricted

(removed) by I1 attempts. Shading is used to denote the portion of the match restricted (removed) and the

fragment that plugs in and is responsible for the restriction (removal).

• Sg is a plug-in site: aplf=1 because f is detached in Step 1 of the attempt I1( Sg)∈J.

• Sg is a TPA site: By Lemma 4 two TPA runs are made on the TPA zone containing

this TPA site; hlf=1 because (by Lemma 2) f contributes − 1
2
Cb(f; L) to the hope

of each TPA run; thus hlf = 1
2
+ 1

2
.

Lemma 7. For f∈Mult(Opt) ∩ Simp(L) we have hlf + aplf = 2.

Proof. Clearly; hlf=0. From Remark 2 it follows that f has exactly two border plug-in

sites; say Sf; Xf. The improvements attempts I1( Sf); I1( Xf) detach f during preparation.

So aplf = 2.

Lemma 8. The score of each match of L is lost at most three times in gain(J).

Proof. By Eq. (4) it su9ces to show that for every f∈ Simp(L); hlf + aplf +

pplf6 3.

Consider the match (f; Sg)∈L and suppose g∈ Simp(Opt). By Lemma 6, hlg +

aplg = 1. Equivalently this loss of Cb(g; L) can be construed as a single passive

preparation loss for each f∈Match(g; L) because Cb(g; L) =
∑

f∈Match(g;L) Cb(f; L).

Therefore, pplf =1 and using Lemma 6, Lemma 7 we have hlf + aplf +pplf6 3.

Now consider the match (f; Sg)∈L when g∈Mult(Opt). We need to consider the

four cases that are illustrated in Fig. 12.

Suppose that f∈Mult(Opt), by Lemma 7 it su9ces to show that pplf6 1. There

are two cases:

• if f owns a TPA zone Xg the attempts that target the two plug-in sites adjacent

to Xg can restrict the match. But as Fig. 12 shows for f1, the restricted portions

are non-overlapping and together subtract the score of the match at most once. So

pplf6 1.

• if Sg, the match of f (f2 in Fig. 12) is contained within a plug-in site Xg then pplf=1

because of the improvement attempt I1( Xg).

Suppose that f∈ Simp(Opt), by Lemma 6 it su9ces to show that pplf6 2. There

are two cases:

• if Sg, the match of f (f3 in Fig. 12) is contained within a plug-in site Xg then pplf=1

because of the improvement attempt I1( Xg).
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• if f (f4 in Fig. 12) owns a TPA zone Xg, Xg is associated with the two plug-in sites

adjacent to it. Attempts that target these plug-in sites can restrict the match. These

restrictions may overlap but together amount to at most twice the score of (f; Sg).

Thus, pplf6 2.

Theorem 4. Algorithm Full Improve solves the Full CSR problem with approximation

factor 3 + �.

Proof. The approximation ratio follows from inequality (3); Lemmas 5 and 8.

4.3. Border CSR

In Border CSR problem we consider problem instances where the optimum solution

contains border matches only.

Lemma 9. There exists a polynomial time algorithm for the Border CSR problem

with approximation factor 2.

Proof. Consider the solution graph (H ∪M;E) of the optimum solution to a Border

CSR instance (H;M; 	). Because each fragments has only two borders and every site

must be a border site; this is a degree 2 bipartite graph. Thus; we can partition E into

two matchings A and B. Clearly the sum of the scores of the matches represented by

one of the sets A or B is at least 50% of the total score. In this set each fragment

participates in at most one match; thus we can assume that all sites in the matches are

full.

Consequently, to Ind a legal solution to our instance of Border CSR with score at

least 50% of the optimum, it su9ces to Ind an optimum legal solution in which every

match consists of two full sites. The latter we can Ind by applying the algorithm for

the maximum weight matching to the bipartite graph with node set H ∪M and edge

weight function

w({h; m}) =MS(h; m):

However, we prefer an alternate algorithm with approximation ratio 3, Border Im-

prove, for the Border CSR problem. Unlike the algorithm of Lemma 9, we will be

able to combine this algorithm with the algorithm for the Full CSR problem discussed

in the previous section.

The algorithm for the Full CSR problem creates full matches only. Therefore, each

island of the solution contains at most one multiple fragment. We call such islands

1-islands. The algorithm for the Border CSR problem allows each multiple fragment

to participate in at most one border match. So, in addition to 1-islands, the solution

may contain 2-islands—islands with two multiple fragments sharing a border match.

Since all sites chosen by the Border Improve algorithm are border sites, we will

occasionally refer to them simply as sites in this section. The algorithm repeatedly

prepares chosen sites on pairs of fragments and forms border matches. A site is prepared

as described in the previous section. In addition, if the site belongs to the multiple
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Fig. 13. I3( Sf 1; Sg1;
Sf 2; Sg2) improvement attempt breaks the 2-island formed by f1; g1 and the 2-island formed

by f5; g2. The matches in which f3, g4 participate are restricted while the matches in which f2, f4, g5
participate are removed during preparation.

fragment of a 2-island, we Irst break the 2-island by removing the match between

the two multiple fragments. This ensures that our solution consists of 1-islands and

2-islands only. We have two improvement methods.

I2( Sf; Sg). Prepare the sites Sf; Sg and match them.

I3( Sf 1; Sg1;
Sf 2; Sg2). Applicable if f1; g1 are multiple fragments of the same 2-island.

Prepare all four sites. Make the matches ( Sf 1; Sg2) and ( Sg1;
Sf 2).

Fig. 13 shows a sample I3 improvement attempt.

Let L be the solution generated by Border Improve. With the knowledge of the

optimum solution, Opt, we will construct a multi-set of improvement attempts J.

Each improvement attempt in J removes some matches of L and creates matches of

Opt. J will have the property that if all the improvement attempts in it are carried out

• each match of L will be removed 12 times,

• each match of Opt will be attempted four times.

When the algorithm terminates because all attempts fail, adding the inequalities repre-

senting the failure of attempts of J gives us

12× Score(L)¿ 4× Score(Opt); (5)

which is the required result.

All the improvement attempts in J try to form matches present in Opt. Thus, in the

description of J an attempt of method I2 is described as I2( Sf), the other site being

implicit. Similarly, an attempt of method I3 is speciIed as I3( Sf; Sg), where f, g are the

multiple fragments of the same 2-island.

We call the sites that are speciIed in an attempt the explicit parameters and the

sites that are implied the implicit parameters. We construct J as follows:

• Let f be any simple fragment or multiple fragment in a 1-island of L. Let f1; f2

be the border sites of f in Opt. Then J contains two improvement attempts I2(f
1),

two improvement attempts I2(f
2).

• Let f; g be the two multiple fragments of a 2-island in L. Let f1; f2 be the bor-

der sites of f and let g1; g2 be the border sites of g. Then J contains the four

improvement attempts—I3(f
1; g1), I3(f

1; g2), I3(f
2; g1) and I3(f

2; g2).
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Fig. 14. (f; Sg)∈ L is shown with the border sites that the fragments have in Opt. f3; f4 represent the portion

of the match restricted by attempts involving g1; g2, respectively.

Lemma 10. The score of each (border) match of Opt is added exactly four times in

gain(J).

Proof. From the construction of J described above; it is easy to see that each border

site of Opt is the explicit parameter of an I2 or I3 improvement attempt exactly twice.

Because this applies to both sites of a border match; each match of Opt is attempted

four times.

Lemma 11. The score each border match of L is lost at most 12 times in gain(J).

Proof. Consider the border match formed by the two multiple fragments; f; g; in a

2-island. Let f1; f2 be the border sites of h and let g1; g2 be the border sites of g in

Opt.

• The match between f and g is broken four times because of the improvement

attempts I3(f
1; g1); I3(f

1; g2); I3(f
2; g1); I3(f

2; g2). These are the only attempts of

J in which f1; f2; g1; g2 are explicit parameters.

• Each of the sites f1; f2; g1; g2 is an implicit parameter of two improvement attempts

in J. These eight improvement attempts break the 2-island during the preparation

of the concerned site.

Thus; the score of the match is lost 12 times overall.

Lemma 12. The score each full match of L is lost at most 12 times in gain(J).

Proof. Consider any full match (f; Sg)∈L. Since hlf=0 it su9ces to show that aplf+

pplf6 12. Let f1; f2 be the border sites of f and let g1; g2 be the border sites of g

in Opt.

• The sites f1; f2 participate in four attempts each. aplf = 8 because these attempts

detach f from g during preparation.

• As indicated by Fig. 14 the four attempts in which g1 participates restrict the portion

of the match represented by site f3. Similarly; the four attempts in which g2 par-

ticipates restrict the portion of the match represented by site f4. pplf = 4 because

overall these restrictions subtract the score of the match exactly four times.

Thus, the match loses its score at most 12 times overall.

Theorem 5. Algorithm Border Improve solves the Border CSR problem with approx-

imation factor 3 + �.
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Fig. 15. In I2(f
1; f2; g1; g2) improvement attempt, f is detached from g1 when the site f2 is prepared.

After the shaded border sites are matched, TPA is run on the sites Illed with slanted lines.

Fig. 16. I2(f
1; f2; g1; g2) attempt breaks the 2-island formed by g and f2. I1(f1; g

3; g4) can be combined

with it. TPA runs are made on the sites Illed with slanted lines.

Proof. The proof follows from inequality (5); Lemmas 10–12.

4.4. General CSR

We now consider the general CSR problem. A site is prepared in exactly the same

manner as in Section 4.3. Thus, the solution generated by the algorithm consists of

1-islands and 2-islands only.

The iterative improvement algorithm, CSR Improve, consists of method I1 from

Section 4.2 and methods I2; I3 from Section 4.3. I2, I3 are modiIed by treating the

border sites as targets of I1 attempts. Thus, for each border site an additional site that

contains the border site needs to be speciIed. Since the modiIcations are similar for

both methods, only I2 is explained in detail.

I2(f
1; f2; g1; g2)

Applicable if f1; g1 are border sites contained in f2; g2, respectively

1. Prepare f2; g2.

2. Match the border sites f1; g1.

3. If f was detached from some site Sg1 in Step 1,

run TPA({ Sg1; g
2 − g1}) else run TPA(g2 − g1).

4. If g was detached from some site Sf 1 in Step 1,

run TPA({ Sf 1; f
2 − f1}) else run TPA(f2 − f1).

Fig. 15 shows a sample I2 improvement attempt.

Also, if an I2 or I3 attempt breaks a 2-island during preparation, the attempt can

be combined with an I1 attempt that targets the newly exposed border site (or part of

it). Fig. 16 shows a valid combination of attempts.

Let L be the solution generated by the CSR Improve algorithm and let Opt be some

optimal solution. We can partition every fragment f∈Mult(Opt) into plug-in sites

and TPA zones using DeInition 6.
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Fig. 17. f; g are the multiple fragments of a 2-island. Plug-in sites are shaded and TPA zones are Illed with

slanted lines. Only some of the matches are shown for clarity.

We can now construct a collection of improvement attempts J. The I2; I3 attempts in

J try to form border matches of Opt. An I2 attempt of J with one explicit parameter,

say I2( Sf), represents the attempt I2( Sf; zone( Sf); Sg; zone( Sg)) where ( Sf; Sg)∈Opt is a

border match.

Similarly, I3 attempts can be described by two explicit parameters—the border

plug-in sites of the two multiple fragments of the same 2-island. J is constructed as

follows:

1. Suppose f; g∈Mult(Opt) are the multiple fragments of a 2-island in L. Let f1; f2

be the border sites of f and let g1; g2 be the border sites of g. Then J contains

the four improvement attempts—I3(f
1; g1), I3(f

1; g2), I3(f
2; g1) and I3(f

2; g2).

2. Suppose Sf is a plug-in site that participates in a border match in Opt and is not

used as a parameter in Step 1, then J has two improvement attempts I2( Sf).

3. Suppose Sf is a plug-in site that participates in a full match in Opt, then J has four

improvement attempts I1( Sf). Whenever possible, these I1 improvement attempts are

combined with the I2; I3 attempts of Steps 1,2.

Lemma 13. The score of each match of Opt is added exactly four times in gain(J).

Proof. Consider a match ( Sf; Sg)∈Opt where g∈Mult(Opt). g can be partitioned into

plug-in sites and TPA zones. There are now three possibilities:

• ( Sf; Sg) is a border match: Lemma 10 shows that MS( Sf; Sg) is added four times in J.

• Sg is an inner plug-in site and Sf = f: the 4 I1( Sg) attempts added in Step 3 of the

construction of J ensure that MS(f; Sg) is added four times in J.

• Sg is a TPA site and Sf = f: Lemma 4 and the above two items imply that TPA is

run on the TPA zone containing Sg exactly eight times. From Lemma 2 it is easy to

see that Cb(f;Opt) =MS(f; Sg) is added four times.

Lemma 14. The score of each match of L is lost at most 12 times in gain(J).

Proof. It follows from Lemma 11 that the score of each border match of L is lost at

most 12 times.

One special instance that needs to be handled is shown in Fig. 17. As mentioned, the

match of the 2-island formed by the multiple fragments f; g is broken 12 times because

of I2, I3 attempts. However, the portion of the match marked x is also restricted in the

four I1( Sg) attempts of J. To prevent x from being lost 16 times overall it is necessary

to combine I1( Sg) attempts with I2; I3 attempts that break the 2-island.
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Analysis along the lines of Lemma 8 can now be used to show that each full match

of L loses its score at most 12 times.

Theorem 6. Algorithm CSR Improve solves the CSR problem with approximation

ratio 3 + �.

Proof. The proof follows from Lemmas 13 and 14.
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